

D7.2

Specification of the of Privacy & Data
Protection (PrivacyNet) Orchestrator

Project number: 833683

Project acronym: CyberSANE

Project title: Cyber Security Incident Handling, Warning

and Response System for the European

Critical Infrastructures

Start date of the project: 1st September, 2019

Duration: 36 months

Programme: H2020-SU-ICT-2018

Deliverable type: Report

Deliverable reference number: DS-01-833683 / D7.2 / Final | 1.0

Work package contributing to the

deliverable:

WP 7

Due date: 30 June 2021

Actual submission date: 17 February 2022

Responsible organisation: PDMFC

Editor: Luís Landeiro Ribeiro

Dissemination level: CO

Revision: < Final | 1.0 >

Abstract: This deliverable reports on the outcomes

of task T7.4 Implementation of the Privacy

& Data Protection (PrivacyNet)

Orchestrator.

It details the description of the

implementation of the privacy services and

the protection orchestrator on the

CyberSANE Platform. It also contains the

installation / deployment guide of the

privacy services and protection

orchestrator component. Work from tasks

T7.2, T7.3 were relevant for defining the

set of services and functionalities that the

PrivacyNet makes available to the

CyberSANE Platform.

Keywords: CyberSANE services, interoperability, data

exchange and sharing, privacy, encryption,

anonymization, API

 The project CyberSANE has received

funding from the European Union’s

Horizon 2020 research and innovation

programme under grant agreement No

833683.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 1

Editor

Luís Landeiro Ribeiro (PDMFC)

Contributors (ordered according to beneficiary numbers)

Name Partner email

Jorge Martins PDMFC jorge.martins@pdmfc.com

Daniel Ascensão PDMFC daniel.ascensao@pdmfc.com

Luís Miguel Campos PDMFC luis.campos@pdmfc.com

Luís Landeiro Ribeiro PDMFC luis.ribeiro@pdmfc.com

Stylianos Karagiannis PDMFC Stylianos.karagiannis@pdmfc.com

Oleksii Osliak CNR oleksii.osliak@iit.cnr.it

Sergio Zamarripa S2 sergio.zamarripa@s2grupo.es

Thanos Karantjias MAG thanos.karantjias@maggioli.gr

Sofia Karagiorgou UBI skaragiorgou@ubitech.eu

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 2

Version History

Version Date Comments, Changes, Status Authors, Contributors, Reviewers

0.1 5/5/2021 First Draft ToC Daniel Ascensão (PDMFC)

0.2 8/6/2021 Final TOC Daniel Ascensão (PDMFC)

0.3 18/6/2021 First Document Draft

Oleksii Osliak

Sergio Zamarripa

Thanos Karantjias

Sofia Karagiorgou

Daniel Ascensão

0.4 22/09/2021 Contribution on Chimera and APIs Luís Landeiro Ribeiro (PDMFC)

0.4.1 10/10/2021 General Revision Jorge Martins (PDMFC)

0.5 02/01/2022 Contribution to 2.1 Internal data Daniel Ascensão (PDMFC)

0.6 10/01/2022 General Revision Luís Campos (PDMFC)

0.7 29/01/2022
Revision of PrivacyNET &
CyberSANE

Luís Landeiro Ribeiro (PDMFC)

0.7.1 30/01/2022 Typos and style revision Stylianos Karagiannis (PDMFC)

0.8 31/01/2022 Final Revision Luís Landeiro Ribeiro (PDMFC)

0.9 31/01/2022 Added Annex I & II Luís Landeiro Ribeiro (PDMFC)

0.91 16/02/2022 Quality Peer Review Haris Mouratidis & Guillermo Yuste (ATOS)

1.0 17/02/2022 Final version Jorge Martins (PDMFC)

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 3

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s
view – the European Commission is not responsible for any use that may be made of the information
it contains. The users use the information at their sole risk and liability.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 4

Executive Summary

This deliverable reports on the specifications, configuration details and the requirements
alignment of the PrivacyNet Component with the CyberSANE Platform, the other
components, and the Critical Infrastructure (CI) owners’ business needs. We present the
approach we followed to connect and embed the various services and functionalities of the
tools into a unified and reusable solution, which has been integrated in the CyberSANE
Platform.

The PrivacyNet component provides the necessary anonymization features that allow threat
intelligence and information sharing capabilities within the CIs and with relevant parties (e.g.
industry cooperation groups, Computer Security Incident Response Teams - CSIRTs) in a
safe way, keeping the personal identified information secret, but keeping the standard
formats intact. Interoperability with 3rd party platforms is feasible, supporting standard API’s
such as SQL and other common protocols.

PrivacyNet delivers its features through Application Programming Interfaces (APIs) adopting
open interoperability standards, including HTTP, JSON and STIX 2.x support.

In this deliverable, we also report how the PrivacyNet services interact with other
components and the platform, especially with WP6 ShareNet services, which rely on

PrivacyNet for operating the anonymization, encryption, and policy enforcement.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 5

Contents

Executive Summary ... 4

Contents .. 5

Terminology, Glossary, Abbreviations ... 8

List of Figures .. 10

List of Tables .. 11

1 Introduction .. 12

1.1 Scope ... 12

1.2 Contribution to other Work Packages .. 12

1.3 Structure of the Document ... 13

2 PrivacyNet Functionalities .. 14

2.1 Internal Data Structures ... 15

2.1.1 Event .. 15

2.1.2 Metago Object Format ... 16

2.1.3 Source .. 17

2.1.4 ReadBuffer ... 17

2.2 PrivacyNET system architecture.. 18

2.2.1 Configuration Files ... 18

2.2.1.1 Config.TOML .. 19

2.2.1.2 Rules.TOML ... 19

2.2.1.3 Configuration Folders... 20

2.2.2 Pipelines ... 21

2.2.3 Sources .. 22

2.2.3.1 HTTP API ... 22

2.2.3.2 Streaming Sources .. 23

2.2.3.3 Batches .. 24

2.2.4 Sinks ... 25

2.2.4.1 SQL Databases .. 25

2.2.4.2 Elastic Search .. 25

2.2.4.3 URLs .. 26

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 6

2.2.4.4 Files .. 28

2.2.5 Core .. 28

2.2.5.1 Source Engine.. 28

2.2.5.1.1 System Configurations ... 29

2.2.5.2 Rules Engine .. 31

2.2.5.3 Rule Types ... 33

2.2.5.3.1 Transform Rules ... 33

2.2.5.3.2 Filtering Rules .. 34

2.2.5.3.3 Aggregation Rules ... 36

2.2.5.3.4 Generating Rules ... 37

2.2.5.4 PII Detection Engine .. 38

2.2.5.4.1 Regular Expressions .. 38

2.2.5.4.2 PII Categories .. 39

2.2.5.4.3 PII DSL Commands ... 40

2.2.5.5 Policy Engine ... 41

2.2.5.6 Homomorphic Functions .. 42

2.2.5.7 Data Anonymization ... 44

3 PrivacyNET & CyberSANE Integration .. 47

3.1.1 OpenAPI Features ... 48

3.1.1.1 PRI-F-010.1 Encrypt Data ... 48

3.1.1.2 PRI-F-010.2 Decrypt data .. 49

3.1.1.3 PRI-F-020.1 Anonymization of security incident data 49

3.1.1.4 PRI-F-020.2 Anonymization of security incident reports 49

3.1.1.5 PRI-F-020.3 Dynamic Data Masking ... 49

3.1.1.6 PRI-F-020.4 Map & Merge Fields .. 49

3.1.1.7 PRI-F-020.5 Filter .. 49

3.1.1.8 PRI-F-020.6 Validation... 49

3.1.1.9 PRI-F-030.1 Data Encryption... 49

3.1.1.10 PRI-F-030.2 Data Decryption .. 49

3.1.1.11 PRI-F-030.3 Transformation .. 49

3.1.1.12 PRI-F-030.4 Search ... 50

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 7

3.1.1.13 PRI-F-040.1 PII Detection .. 50

3.1.1.14 PRI-F-040.2 PII Redaction / Privacy Rules Workflow Engine 50

3.1.1.15 PRI-F-040.3 Privacy Rules Operation Metrics .. 50

3.1.1.16 PRI-F-050.1 Data Access Management .. 50

3.1.1.17 PRI-F-050.2 Save Data Retention ... 50

3.1.1.18 PRI-F-050.3 Retrieve Data Retention.. 50

3.1.1.19 PRI-F-050.4 Register PII Data Processing .. 50

3.1.1.20 PRI-F-050.5 Retrieve PII Data Processing Details 50

3.1.1.21 PRI-F-050.6 Notify PII Data Usage ... 51

3.1.1.22 PRI-F-050.7 Retrieve PII Data Processing History 51

3.1.2 Custom pipeline Examples .. 51

3.1.2.1 Anonymization of lessons learned ... 51

3.1.2.2 Anonymization of assets with inline rules .. 57

3.1.2.3 Anonymization of incidents .. 58

3.1.2.4 Anonymization of Anomalies ... 61

4 Conclusions and Future Directions ... 64

5 References .. 67

Annex I – Config Spec ... 69

Annex II – Rules Spec.. 74

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 8

Terminology, Glossary, Abbreviations

Abbreviation Description / Translation

API Application Program Interface

CI Critical Infrastructure

CRON Unix job scheduler

CRONTAB

Cron table file, that describes what jobs should be run at what schedule.

Example:

CSIRTs Computer Security Incident Response Teams

CyberSANE
Cyber Security Incident Handling, Warning and Response System for the European Critical

Infrastructures

DSL Domain Specific Language

RBAC Role-based Access Control

DSA Data Sharing Agreement

STIX Structured Threat Information Expression

ABE Attribute Based Encryption

SOTA State Of The Art

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 9

FPE Format Preserving Encryption

RUNE
Rune literals are just 32-bit integer values (however they're untyped constants, so their type can

change). They represent Unicode codepoints.

DPI Deep packet inspection

AES-FFX Format-preserving, Feistel-based encryption

HTTP Hypertext transport protocol

JSON JavaScript Object Notation

REST
Representational state transfer, a set of constraints specifying how to develop internet services for
distributing multi-media data

TOML Tom's Obvious, Minimal Language

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 10

List of Figures

Figure 1 - Event Struct ... 16

Figure 2 - PrivacyNET High Level Architecture ... 18

Figure 3 - Configuration files .. 21

Figure 4 - Pipeline Generic Example ... 21

Figure 5 - Traditional Http Request API .. 22

Figure 6 - Integration through local storage .. 23

Figure 7 - ESOUT output to elastic search .. 26

Figure 8 - Rules Processing .. 31

Figure 9 - Rule Types .. 33

Figure 10 - Filter Rule .. 34

Figure 11 - Aggregation Rule ... 36

Figure 12 - Generating Rule .. 37

Figure 13 - PII Process .. 38

Figure 14 - Privacy Data Retention Engine ... 42

Figure 15 – Homosearch ... 44

Figure 16 - Chimera Web Studio .. 45

Figure 17 - GUI for rules creation .. 46

Figure 18 - PrivacyNET workflow inside CyberSANE ... 47

Figure 19 - Summary of PII report of a SQL database ... 48

Figure 20 - Example of report from PII detection by category .. 48

Figure 21 - Encrypt Endpoint ... 48

Figure 22 - Http API to scrub lessons learned .. 56

Figure 23 - Dataflow mask assets ... 58

Figure 24 - Incident anonymization dataflow ... 60

Figure 25 - Mask Anomalies Dataflow ... 63

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 11

List of Tables

Table 1 - PII Categories ... 39

Table 2 - DSL Commands ... 41

Table 3 - PrivacyNet Services’ Grouping and Mapping with Component’s functionalities . 65

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 12

1 Introduction

1.1 Scope

This report presents the APIs and overall architecture of the PrivacyNet component of the
CyberSANE Framework.

The deliverable focuses on the technical details of the multiple features designed,
implemented and integrated. It starts with attribute-based encryption (ABE), then moves on
to Privacy Models. Follows with dynamic processing to deliver a privacy framework that can
deal with a diverse set of input formats and taxonomies. This deliverable lays out the
groundwork and modelling language that allows for user defined configurations but comes
“with batteries included” by providing sensible conventions and configurations that out of the
box can deal with STIX 2.1 formats for Incident Data, Lessons Learned or Threat
Intelligence. Detailing the APIs endpoints, their attributes and return format.

To clarify intent, the deliverable includes a few examples of remote calls, and the respective
outcomes.

Afterwards, we present custom encoding algorithms and formats developed to support FPE
(using AES-FF1) when anonymizing data that has strict length requirements, a regular
occurrence inside legacy SQL databases schemas. These schemas have a variable
encoding that require detailed and careful handling. This work also presents a way to deal
with different encodings and provide user definable encodings through manual rune
alphabet definitions.

On the network side, which is crucial for forensics and incident analysis network information,
this report presents how the PrivacyNet supports NetFlow, ingestion or outputting it in a flat
json format and capturing and processing of network data on a device interface, through raw
packet captures. Supporter operations with packet captures, and how to anonymize and

filter through DPI and relevant APIs follow.

Finally, we end with the report on the implementation of the privacy policy models and how
they can be setup and driven by the required user defined rules as well as the integration
with other 3rd party tools. During the integration, we dive deep into pipelining and how data
processing occurs.

1.2 Contribution to other Work Packages

As mentioned above, the purpose of this document is to specify the list of services, APIs
and functionalities of the Privacy Component, which serve as the main component for
anonymizing information generated into the CyberSANE platform and information shared or
gathered by external to the organization contacts and entities.

WP7 considers the business requirements which have been specified in the frame of “WP2
User requirements and Reference Scenarios” to define the tools and services required.
From WP3 the study of current SOTA of threat information sharing or incident response
report formats, inform what anonymization pipelines and rules are needed, as well as

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 13

common encodings, taxonomies and data models that are value added to be provided out
of the box.

In WP2 (D2.4) a generic theoretical approach of web API of services and functionalities was
layed out. That source is tweaked and presents in this document the new versions that were

required to fill the implementation needs from integration work.

The tools and services from PrivacyNet support the CyberSANE Platform in the frame of
“WP8 CyberSANE System Visualization, Integration, Deployment and Fine tuning”, but also
the other CyberSANE Components.

1.3 Structure of the Document

The structure of the document includes the following main chapters:

• Chapter 1 introduces the document, its scope, and the contribution to the other work

packages;

• Chapter 2 provides a high-level summary of the different tools in the support of the

PrivacyNet functionalities, including the additional functionalities which have not yet

been reported and have been integrated in the CyberSANE Platform;

• Chapter 3 goes into lower-level APIs specifications, input parameters, processing

and outputs, provided by the PrivacyNet component;

• Chapter 4 concludes the deliverable and provides our plans for future activities.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 14

2 PrivacyNet Functionalities

The following paragraphs introduce the tools integrated in the CyberSANE platform to
support the PrivacyNet functionalities. PrivacyNet provides the privacy primitives to
CyberSANE platform. In particular, it allows for the different CyberSANE components to
perform the following functions:

• Anonymize structured data

The Generic Anonymization API allows for dynamically Anonymize files (text format)

and / or text streams using traditional cryptography. In practice this endpoint permits

the caller to define the input text stream, the encoding of said stream, the

anonymization algorithm (MD5, SHA1, SHA256, SHA384, Blowfish, Text

Generalizations, and others), the match rule (regex or other supported parser) and

format the output should be encoded.

• PII Detection

The Personally Identifiable Information detector API, provides an endpoint that can

search both SQL databases and known text formats for following categories

Financial, Personal, National, Tech, Other.

Each category contains a set of attributes that are considered PIIs for a given doc.

For example, in the financial category, we have Bank Account Number, Credit Card

Number, CVV and others.

This endpoint point can either report a JSON file with an array of location, PII

Category, PII attribute and Rules that match, or an Excel file with the same

information split among several sheets.

• Generic Encryption / Decryption

The Generic Encryption API allows for dynamically encrypting files and / or byte

streams using traditional cryptography. In practice this endpoint permits the caller to

define the input byte stream, the encoding of said stream, the symmetric encryption

algorithm (AES, AES-FF1, AES-FFX or equivalent), the key size (128,192,256 bits)

and cipher mode (CBC, ECB, etc) and format the output should be encoded.

• Privacy Policy Enforcement

The Privacy Policy API permits callers to setup a regular callback to notify a third-

party system (through an HTTP Get or HTTP Post or DB Query) of the need to delete

data that has expired it’s need. This requires the callee to define both the callback

URL, parameters; the frequency the check is performed; and the rule used to expire

data.

• Attributed Based Encryption / Decryption

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 15

ABE API permits callers to dynamically parse a document and apply encryption or

anonymization algorithms to only parts of the document. This allows the callee to

redact partially whole documents, and have the output returned on the same format

as it was submitted. Either JSON or well-known formats such as Excel or PDFs.

• Incident Data Redaction

The Incident Data Redaction API provides an endpoint that can process STIX 2.1

format for incident data and perform anonymization functions on specific attributes.

For instance, IP Masking a generalization function that reduces IP significance by

stripping the lower n bits and replacing them with a user provided mask.

• Lessons Learned Data Redaction

The Lesson Learn Redaction API permits callers to submit lessons learned in a pre-

set format, and have it redacted using a list of rules that match any fields or values

based on their definitions and removes or replaces said fields or values with null /

predefined text / pseudo token. Then returns to the caller a document in the same

format without the redacted PIIs.

• Network Data Redaction

Redacting Network can operate with multiple input formats, either a PCAP format file

that can be analysed with DPI tools for known protocols (TCP, UDP, http etc) or a

flat json format with the relevant fields from NetFlow or SFLOW. PrivacyNet can

process them both and output data in JSON format with a set of attributes or

protocols redacted or filtered.

• Homomorphic Encryption

PrivacyNet provides the primitives to store data using homomorphic encryption with

a particular scheme to allow homomorphic text search without decrypting the

contents.

2.1 Internal Data Structures

Before we go into the details of the PrivacyNET architecture, it’s essential to understand the
principal database formats of the data structures used to power the system.

Such formats are mentioned several times in this document, when explaining the other
components and are a key concept behind how everything is mapped.

In this section we present the Metago Object Format, the Event itself and the arc meta
structure ReadBuffer.

2.1.1 Event

Inside PrivacyNET the events are parsed into Events. This structure contains a map from
strings to generic interfaces which means all the keys are required to be strings and the

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 16

values of the map can be whatever type, interface, or primitive type. Internally pipelines work
on arrays of events of type Event.

Below we present the golang definition of the Event type.

// The structure where generic events are stored internally
type Event map[string]interface{}

Figure 1 - Event Struct

2.1.2 Metago Object Format

PrivacyNET is essentially a stateless flow processor, in the sense that multiple data
streaming doesn’t influence how other data streams are processed or handled. It’s not a
pure stateless system has we don’t require actions or rules to be 100% stateless, they can
aggregate self-contained statistical data for each run.

Being stateless forces data to be serialized. So to shared data between rules or sent to
another system the Metago object format is used the objects consist off a structure with a
header and an array of Events.

// MetagoObject - Struct ease serialization of events to JSON for client-server comms
type MetagoObject struct {
 Header map[string]string `json:"header"`
 Events []Event `json:"events"`
}

The events are multiple entities of the structure defined on the previous subsection 2.1.1.

The header contains information specific to events on the payload, and by default it includes
the following fields:

 "header": {
 // Unique agent identifier uuidv4
 "agentId": "metago-4e60b304-bb8c-480a-977d-c780f315d430",
 // CPU Arch
 "architecture": "amd64",
 // Event structure
 "format": "metago",
 // Hostname / Device Name
 "host": "MacBook-Pro.local",
 // Index where data should be stored
 "index": "test_suricata",
 // Operating System name
 "os": "darwin",
 // Source where the events come from
 "source": "test/data/json_row.json",
 // Sourcetype name
 "sourcetype": "suricata",
 // Timestamp field
 "timefield": "timestamp",
 // Time parser string
 "timeformat": "YYYY-MM-DDTHH:mm:ss.sssss%z",

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 17

 // Timezone
 "timezone": "Europe/Lisbon"
 }

2.1.3 Source

The interface for all inputs, any new input component needs to at least provide the methods
below to work seamlessly with PrivacyNet rules and sinks.

Each method is preceded with a summarized description of its purpose.

type Source interface {
A human readable URL that represents the source of data
 URL() string
The main method that collects data and send it downstream through a ReadBuffer Channel
 Monitor(in chan *ReadBuffer) chan bool
A callback to be invoked by the sinks when the last event has been processed, to give the source notice to
close any dangling resources, such as database handles or file handles
 NotifyLastEvent(e *Event)
A callback to be invoked by the core system, to let give the source the chance to exit cleanly, by releasing
acquired locks and resources, to stop the influx of data and keep the status consistent
 Quit()

… other methods provided by the internal system, that are shared between different sources
}

2.1.4 ReadBuffer

This is the main container used for data processing. Each pipeline will receive streams of
data through a channel of ReadBuffer objects. All objects are initialized prior to handling by
the program, to avoid null dereferences.

Inside ReadBuffer we have and array of bytes that can store raw data in any format. A source
referencing the place where data comes from, an array of events that store transformed
data, and an array of errors that keep track of any issues encountered during the runtime
processing of the current ReadBuffer.

type ReadBuffer struct {
 Bytes []byte
 Source Source
 Events []Event
 Errors []error
}

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 18

2.2 PrivacyNET system architecture

In this section we present the high-level description of the PrivacyNET component, how the
main blocks talk to each other and how the information flows internally. Details on how to

communicate with other components are presented in the next subsections.

Below we have the general architecture for PrivacyNet.

Figure 2 - PrivacyNET High Level Architecture

2.2.1 Configuration Files

There are two configuration files config.toml and rules.toml. Config is used for setting up
sources and outputs, and rules to setup the transformations required to parse sources into
the internal Metago format.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 19

2.2.1.1 Config.TOML

Config used the TOML format where sections are demarked through stanzas ([name]) with
property then being mapped into a map like structure where the attribute keys are strings (in
this case) and the values can be any of the following common objects:

Strings, floats, Integers, Booleans, Arrays / Lists, Maps.

Below is an example of a configuration file, that reads the file on the relative path
“./test/data/dnslogs.txt”, and applies the relevant rules, dns; str; trim and debug.

[file.in]
Path="./test/data/dnslogs.txt"
BatchMode=true
NoTracking=true
Rules=["rex.dns","replace.str","string.trim","outputs.debug"]
[outputs.debug]
Urls=["https://example.org/path/"]

Untangling this configuration, from the outputs side, it will parse the URL and assume based
on the https:// start that it will contact the machine at example.org and make an async HTTP
Post request to the location /path. The body of the HTTP Post will be a JSON document,
with the METAGO object format.

The full spec for Config.TOML is available on Annex I.

2.2.1.2 Rules.TOML

This configuration file follows the same TOML format as Config, but it is where processing
rules are declared. Each rule should be defined following the stanza convention, which
requires the stanza to be named as [<rule type>.<name>]. Rule type defines the actions that
will be taken, and the name is how the rule is stored internally, so that you can refer to them

in the inputs’ Rules attribute.

Considering the example from before, let see how rules are declared and go through at they
do.

[rex.dns]
Patterns=['(?P<timestamp>\d+\/\d+\/\d{4} \d+:\d+:\d+ ..) \w{4}
\w+\s+\w+\s\w+\s(?P<direction>\w+)\s(?P<client_ip>\d+.\d+.\d+.\d+)\s+(?P<xid>\w+)\s(?P<queryresponse>[
\w])\s(?P<opcode>[\w])\s\[(?P<flags_hex>\w+)\s(?P<flags>[
ADTR]{4})\s+(?P<response_code>\w+)\]\s(?P<query_type>\w+)\s+(?P<query>[^\n]+)']
Optional
Field on which to apply the regular expressio, if nothing is given it will be checked against
the internal Bytes on the ReadBuffer
Field="_raw"
Optional
Since: 1.1.48
Allows for the grep -v logic where the regex is inverted
Invert=false
Optional
Since: 1.1.48

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 20

Specify the run mode, filter the Events or Extract Fields, by default extracts fields
Filter=true

This defines a regular expression rule, with has a set of attributes. Patterns being the only
mandatory one, and which should be an array of strings that map to a regular expression.

“rex.dns” – A rule to extract the DNS request attributes through a regular

expression

“replace.str” – replaces (<number>) from a DNS request with the regular “.”

“string.trim” - removes the leading and trailing “.”

[replace.str]
Field="query"
Regex='(\(\d+\))'
Value="."
[string.trim]
Fields=["query"]
Op="trim"
Args=["."]

2.2.1.3 Configuration Folders

PrivacyNET can be configured by dropping rules.toml and config.toml files into two folders
relative to the installation path. First the folder “./default” will be scanned for these files,
afterwards the folder “./local”, if there are configuration on both directories for the same files,
then a merge between the stanzas present in both files occurs. In this merge the
configuration from the local folder takes precedence and override any stanza with the same
name in the default folder. Finally, if there are user defined specific files that are different
from the ones already present in the default and local folders, these files are read and their
content is merged with the current configuration, these user defined files take precedence
and override previously configured stanzas.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 21

Figure 3 - Configuration files

2.2.2 Pipelines

Figure 4 - Pipeline Generic Example

Pipelines are the central concept of this component; they represent the set of rules a given
flow should have. They map a source, generically any way to receive data, with a list of rules
that run-in sequence on a batch of events. Those rules manipulate each event and can
perform any function from the set presented on the later subsections. They can be viewed
as ways to mutate and transform data, to match the desired effects by the user. Optionally
the pipelines have outputs (also called sinks), resulting in the data at the last transformation
being stored in a temporary or permanent storage. Example of such storage would be SQL
databases or plain text files.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 22

2.2.3 Sources

Sources are any connectors that retrieve data from external systems or read data from
sockets or local files. In the next subsections we present the most common sources and
detail their functions.

2.2.3.1 HTTP API

The main entry point of data into PrivacyNET is HTTP API, it allows for simple RESTful calls.
These endpoints can be broken down into 5 main categories: anonymization, cryptography,
PII detection, privacy policy and homomorphic encryption. The details for the features will
be presented on the next chapter. Here we will present a generic view of the HTTP input
features and their relation to the rest of PrivacyNET.

The original intent of an HTTP input would be to allow for the dynamic definition of web
services that could help users map predefined paths to a pipeline and get back the results

from applying that pipeline rules to the payload sent on the original request.

Figure 5 - Traditional Http Request API

However, to improve the performance when dealing with large files, and to simplify the
architecture when deploying on Docker containers or inside a Kubernetes cluster. An
alternative mode of operation is made available for PrivacyNET. One where the callers can
invoke the HTTP services but instead of sending the raw bytes of the file to be processed
(encoded in whatever format we could agree upon, that would be simultaneously supported
by the caller and the callee), they provide only the path of the file to be read on a common
volume. This has the merit of avoid the multiple serialization and deserializations costs
through multiple http requests but imposes the restriction of a shared storage between both
components.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 23

Figure 6 - Integration through local storage

2.2.3.2 Streaming Sources

Monitoring files is the most common streaming source for PrivacyNET, this is relevant when
ingesting log files, for instance to scrub PII data from them, prior to save on permanent

storage.

File sources are the bread and butter of any log collection agent, they can be in multiple
formats, plain text, json, xml, syslog and any other text format there is. This component is
agnostic to format, but if you want to properly parse time and event attributes, it’s up to the
user to setup the processing rules. By default, datetime is extracted for each parsed event
using complex and large regular expressions, but this can be overwritten by user
configuration. Time zones and encodings are also configurable, we favour convention over
configuration, so it’s recommended to keep the default values omitted and only specify what

needs to be changed.

Below we present an example configuration spec for reading the file “in.csv”.

FILE ##
Stanza example for monitoring files
[file.csv]
The filepath to monitor, can be absolute or relative to work dir
Path="in.csv"
Array with the names of the rules to be applied to this input
Rules=["rex.csv","ff1.dstip","hash.srcip"]
Array of outputs where processed events will be sent after they go through the pipeline
IMPORTANT: At the moment this array can only have 1 output, having 2 or more will cause random lockups
Outputs=["kv"]
File encoding, by default utf-8 if nothing else selected
Full list available at docs/encode_formats.md
Encoding="utf-8"
Don't keep track in the internal db of the current offset that's already processed
NoTracking=false

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 24

Don't monitor file forever, just read once until EOF
BatchMode=false
String Specify the characters that will be considered for an EventBreak, by default "\n"
EventBreak="\n"
Whether of not this input is active
Disabled=false
Random chars that can be used to bypass previously stored states/offsets for a given file url
Useful when the file has been rewritten and it's required for it to be processed from 0 again
Salt=””
Boolean to specify if the input should be threats as a single file or a folder and all files inside should be
monitored
Folder=false
Max number of bytes to read at a time from the file
BatchSize=65536
Since: 1.1.49
Disable event breaking, this will present all the read bytes in the current batch.
In combination with BatchSize it can be used to read the file in one go, this is useful to process json files
NoEventBreak=false

2.2.3.3 Batches

On the off chance that files need to be processed once, it’s also provided a mechanism to
read file in a single run. In the previous subsection, the property BatchMode was disabled
as it was set to false. If this property is set to true, then the file will only be read once, and
further chances to it, won’t be read by PrivacyNET unless the component is restarted.
Running inputs in BatchMode is mostly useful for testing purposes or for running the tool on
the command line.

In CyberSANE BatchMode should always be disabled when running as a service in
production environments.

In special inputs such as the traditional SQL databases, batches can take a hybrid form.
They can run at a given schedule, using CRONTAB like definition with an extra position at
the beginning to define the seconds recurrence rule.

 ┌─────────────── second (0 - 59)

 │ ┌─────────────── minute (0 - 59)

 │ │ ┌───────────── hour (0 - 23)

 │ │ │ ┌───────────── day of the month (1 - 31)

 │ │ │ │ ┌───────────── month (1 - 12)

 │ │ │ │ │ ┌───────────── day of the week (0 - 6) (Sunday to Saturday)

 │ │ │ │ │ │

 │ │ │ │ │ │

 │ │ │ │ │ │

 * * * * * * <command to execute>

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 25

2.2.4 Sinks

The outputs that come bundled with PrivacyNET are the called sinks, for their ability to
receive data that has been processed and converted into the internal object format. Sinks
are the destination where data can be stored and saved. They range from the traditional
SQL databases to new NOSQL trends, such as Elastic Search. But can be as simple as a
text file stored on a local disk. In the next subsection the relevant sinks are presented and

detailed.

2.2.4.1 SQL Databases

The SQL DB sink executes an UPDATE or INSERT INTO sql query on the selected
database. The query is loaded as a prepared statement to protect against SQL injection on
the arguments, which are specified by the users or from the data being processed.

Below we present the full specification of attributes for the configuration of this stanza.

DBOUT Save to DB ###
Execute an Insert or Update statement constructed from a SQL template with optional Params that will be
retrieve from each Event
[dbout.cadev_out_sim]
Database definition where to connect to
DB="sitam"
Truncate the output if db column can't store it all, instead of letting the DB deal with it
Truncate=false
Prints the SQL instead of executing updates implies KeepStatus = false
DryRun=false
Prints the prepared statement as SQL query instead of placeholders with args
DrySQL=false
Params to be used as query parameters
Params=["Cliente","ClienteNome","ClienteNIF","ClienteDataNascimento","ClienteMorada","ClienteTelefone","C
lienteEmail","__STATUS__","__DATE__","SimulacaoId"]
SQL to be executed
Query="UPDATE [dbo].[Simulacoes] SET [Cliente] = ? , [ClienteNome] = ?, [ClienteNIF] = ?,
[ClienteDataNascimento] = ?, [ClienteMorada] = ?, [ClienteTelefone] = ?, [ClienteEmail] = ?,
[estadoAnonimizacao] = ?, [dataAnonimizacao] = ? WHERE [SimulacaoId] = ?"
Whether or not to keep tracking of the processed rows
KeepStatus=true

2.2.4.2 Elastic Search

The Elastic Search data sink inserts new documents into an existing Elastic Search
database. Inside the metago format (2.1) the events are stored inside an array, for each

event a new document will be created on the target Elastic Search database.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 26

Figure 7 - ESOUT output to elastic search

The esout stanza, iterates over the events inside a ReadBuffer, converts them into JSON
selecting only the fields defined on the configuration file, and asynchronously and using
multiple threads sends them into an ElasticSearch database. Inside Elastic Search, indexes
have the same roles has databases inside a tradicional SQL database, and documents are
the equivalent to the column/rows inside a SQL table.

The current spec for using this stanza is:

ESOut ###
Saves the current pipeline result to an elastic search database
[esout.savetoelastic]
Required ##
List of fields to save to elastic
this will save {"name": <namevalue>, "age": <agevalue>}
Fields=["name","age"]
ES index
Index="main"
Host="EShost"
Port=9200
Optional ## authentication
User and Pass
User=""
Pass=""

2.2.4.3 URLs

Sinks based on URLs can be both local and remote, they provide a concise way to save

data in a pre-defined format. The set of common formats out of the box are:

Format Description

raw Writes Readbuffer.Bytes directly without any conversion or encoding.
Delegates the responsibility for encoding into the pipeline rules that come

before.

json Formats the ReadBuffer.Events in JSON as an array of events

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 27

Example: [{"key": "value1", "other_prop": 1}, {"key":"value_event2",
"other_prop": 2}]

kv Formats each event in ReadBuffer.Events with a Key Value format split
by newline “\n” character.

Example: key=”value”, another_key=”value2”

csv Formats the ReadBuffer.Events in CSV format. By default uses “\n”
newline character to split the event, “,” to split between multiple columns
and ‘”’ as the encoding character (begin “ + Value + “ end) to specify a
string value (normally only required for values that contain the special
characters used for the CSV format, as mentioned on the previous

sentence).

Example:

key,another_key

“value”,”value2”

custom See detailed explanation below

By convention the start of the URL defines the template to encode the ReadBuffer
information. When convention is not enough users can fallback specifying a Custom format
and use the Template attribute which will be sourced to encode each event inside
ReadBuffer.Events. The $var_name is used as a key on the Event being processed and
replaced with the string representation of the value found inside the Event. If no such key is
present, it will fall back to an empty string.

To save the data locally there are 3 possible options, file:// which receives a local path where
the kernel syscall write will be used to write or append the file. The pcap:// format will save
the raw network packets that should be inside ReadBuffer.Events on the “_packet” attribute.
This assumes a network_interface used as source and the value of the “_packet” key inside
the Event is filled with the proper captured packet data with packet bytes and metadata.
Lastly it is possible to use stdout to print to the terminal’s output where the tool is running.

Below we have the spec for the output stanza:

Output stanzas to be used save data to a url
[outputs.kv]
Format to write the output in
"raw" - Writes the bytes was they arrived during the pipeline
Useful for binary data transfers or pcaps

"json" - Formats the ReadBuffer ([]Event) in json as an array of events
[{"key": "value1", "other_prop": 1}, {"key":"value_event2", "other_prop": 2}]

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 28

"kv" - Formats the ReadBuffer ([]Event) in key value format
key="value" other_prop=1
key="value_event_2" other_prop=2

"csv" - Formats the ReadBuffer ([]Event) in csv format
key,other_prop
value,1
value_event_2,2

"custom" - Formats the Events using a string template defined on the Template attribute
Format = "custom"
Template to be used on custom output formats
Template="$name is the best journalist in the whole $place"
Magic URLs that point to the right output
Supported Formats
 # "tcp://host:port" - Open a TCP connection to <host> at <port> sends the event bytes there
 # "udp://host:port" - Open a UDP connection to <host> at <port> sends the event bytes there
 # "metago://host:port/path" - Uses HTTP with METAGO event encoding to <host>:<port>/<path>
 # "metagos://host:port/path" - Uses HTTPS with METAGO event encoding to <host>:<port>/<path>
 # "file://local_path" - Write to a local file
 # "pcap://local_path" - Writes a pcap file, only to be used with network packet captures
 # "stdout://" - Write to STDOUT
Urls = ["stdout://"]
OPTIONAL FIELDS ##
Only useful for file outputs, values can be "append" or "write"
Mode="append"

2.2.4.4 Files

Saving data into files, follows the same rules as specified on the 2.2.4.3.

2.2.5 Core

The core is the engine for PrivacyNET, the place where the mapping between inputs and
rules happens, and where the event pipeline churns along the events passing through. In
this section we present the main components in the PrivacyNET and explain how data flows
through them.

2.2.5.1 Source Engine

When the PrivacyNET starts it will read the configuration files, parse them into 4 types of
entities. The inputs, the outputs, the rules, and system configurations. The inputs are the

sources defined in 2.2.3.

The source engine is responsible to connect both the setup inputs with the outputs by
stretching out the rules that were defined in the configuration files. As specified on the
configuration file config.toml all the inputs receive a list of rule names. The source engine is

responsible to map those names into the configured rules on the rules.toml stanzas.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 29

In the next subsections we will describe the different configurations starting with the system
configs, will go into detail about the metago object format as well as the rules, the templates,
the presets and other specific functionalities that PrivacyNET provides.

2.2.5.1.1 System Configurations

Inside of the system configurations we have 3 stanzas types that define different entities will
start off with explaining the database stands up which allows the users to define connections
to standard SQL databases disconnections receive the usual host port user passwords and
a few other custom parameters that these databases might support.

Next, we present the source types. Source types are an abstraction on the format for the
data being read on the source types we define stuff such as encoding's time format and a
way to parse times from whatever has been reads this allows the user to define their local
time string parsing format to match whatever that computer his endpoint or the server where
is collecting data from is set up with. parsing time is one of the critical steps for each event
processing will go more into detail in the later subsections.

Lastly, we outline the system configurations.

• Databases

DBConfig - struct to hold database configurations
[db.sitam]
Required Fields ##
User="notroot"
Pass="youwishyouknew"
Host="hostofdb"
Database driver to use, supported:
mysql
psql or postgres
mssql or sqlserver
Driver="mysql"
Port=3306
Database="sitam"
Since 1.1.51
Defines the max number of connections to hold in pool 0 for unlimited
MaxConn=0

Database stanzas start with DB then we have a dot to split between the type and the stanza
name and finally we have the stanza name.

In this example we are setting up database with the name sitam. The required fields for any
database configuration include user pass host driver ports and database optionally users
can also define a Max connection with Speech specifies the Max number of connections to
old on the pool for this database if nothing is defined or zero which is the default configuration
is specified the pool can have unlimited number of connections which are obviously limited
by the resources of the underline system where the agent is running.

These database stanzas can then be referred to from either inputs or rules for instance the
DBin stanza, that specifies and input from a db where a SQL query is going to be run on
predefined Cron recurrent expression. Also inside rules.toml configuration file we can refer

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 30

to this database configuration from rules types that operate on databases for instance the
DB lookup rule.

• Sources Types

SourceTypes
Since: 1.1.0
SourceType is a string that defines the type of the source, and configures the time parser to be used
as well as the timefield to be considered as the time of the event
[sourcetypes.sysmon]
Required Fields
Format of the event should be encoded when sharing with other systems
Format="METAGO"
Field to be considered as the time of the event
TimeField="timestamp"
Time parser to be used to parse the time field
TimeFormat="YYYY-MM-DDTHH:mm:ss"

The source type stanzas are where we define the meta attributes for event parsing. In here
we associate a name as shown above in the example with the source type for Sysmon, with
the format for event sharing, the field to be considered as the time for the event and the
parts of string to be used when parsing the event time field.

source types are useful abstractions to reduce the boilerplate information since we are often
going to encounter formats that we have already parsed in the past it's useful to be able to
refer to previous configurations and not repeat on each input stanza the same format time
field and time formats.

• System Configuration

Stanza for internal system configuration
[system.web]
Disables the web server API
Disabled=true
Since: 1.1.57
Port=8080

Inside the system stands there we can configure for the time being only two things whether
the web server for the agent is going to be launched when the service starts and the port
where that web service should be listening on. This web server is important for the service
to be able to be orchestrated remotely but when it's run as a command line tool, we generally
want the web service to be off for testing purposes since this configuration imposes a lock
on whether the service should exit for processing shopping all the data that it had gathered
on the inputs. If the property “Disabled” is set to true in the system.web stanza, and if we
only have inputs that don't require active monitoring like a file input with BatchMode=true,
the tool will exit after all events have been processed.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 31

2.2.5.2 Rules Engine

Figure 8 - Rules Processing

Rules are the bread and butter for the core system, they live inside pipelines and form a
daisy chain where the output of the first rule is passed on to the input of the next one until
the pipeline is finished. At the end the result is sent to respective output that will be

connected to the pipeline.

To better understand what rules are and what types of rules exist, we need to start with the
ingestion part. Ingestion occurs at the sources, it takes a set of documents, HTTP requests,
database rows, or anything else that matches a source or an input, converts the data inside
into a ReadBuffer object. ReadBuffer is then sent streaming into the pipeline. The pipeline
makes all events inside of that ReadBuffer go through the rules in the daisy chain. Each rule
can manipulate events on the individual level between them, the events can be filtered,
augmented, and created. For instance, regex rule can select only events that match a given

regex on a predefined field.

Each rule runs in its dedicated coreroutine, which runs on it’s one dedicated goroutine. In
effect all rules inside a pipeline can run concurrently and in parallel.

Rules share with pipelines the architecture for notification and asynchronous processing.
Both are based on the CSP [2], rely on channels and communicating through messages
without sharing memory. Rules contain one channel for input, one for output and another for
exiting. The input and output ones have been previously explained. The Quit channel’s
purpose is to notify the rule that the main engine is requesting its orderly termination as soon
as possible. The rule is then responsible to stop consuming data from the input, processing
the ReadBuffer that it might be processing, and exiting freeing any resources it might have
acquired.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 32

For those familiar with POSIX [3], the first notification on a rule to quit has semantics similar
to those of sending a SIGINT signal to a running process, and the second notification has
the semantics of a SIGKILL.

Under the scene rules are processed following the algorithm:

1. Receive a ReadBuffer from the input channel

2. Create a new ReadBuffer to save the output

3. For all events in the ReadBuffer do

a. Extract the value for the date property from the event

b. Apply the month generalization on the value

c. Create a new event with all the properties copied from the original event

d. Replace in c) the value b) of property “date”

e. Save the new event in a new ReadBuffer 2)

4. Send ReadBuffer 2) into the output channel

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 33

2.2.5.3 Rule Types

Figure 9 - Rule Types

2.2.5.3.1 Transform Rules

The most common type of rule is a Transformation rule, it will process an event and mutate
some of its properties. To exemplify the type of rules we are writing about please check the
Bucket rule spec below, later we will go through how it works.

######## BUCKET ##############
Takes a list of fields and performs date rounding to
one of the following Durations
"second", "minute", "hour", "day", "week", "month", "year"
[bucket.bin_riscos]
List of fields to be generalized
Fields=["BirthDate","LicenceDate"]
"second", "minute", "hour", "day", "week", "month", "year"
Duration="month"
Format of dates / time to be processed
follows clever format, 06-year, 01-month, 02-day etc
Format="2006-01-02 15:04:05"

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 34

The bucket rule applies a generalization of a date into a less specific date. Let’s say we start
with the following event:

{"date":"2020-10-04 15:12:04", "name":"Bill Tailor"}

And the following rule:

[bucket.date]
Fields=["date"]
Duration="month"
Format="2006-01-02 15:04:05"

The outcome would be the following event:

{"date":"2020-10-01 00:00:00", "name":"Bill Tailor"}

2.2.5.3.2 Filtering Rules

Figure 10 - Filter Rule

Unlike transform rules, where the input cardinality and the output cardinality should be the
same, filter rules can reduce the cardinality of the number of events. In lay terms this means
reducing the number of events. If n events are ingested, at most n are returned.

As an example, we present how the REX (grep) rule works, consider the following spec:

REX Regular Expression ####
[rex.myregexes]
Required
List of patterns to process by order on each event going through the pipeline
Patterns=["(?P<name>)[^,]+)","can't stop (?P<program>[^]+) from crashing and (?P<sideeffect>[^]+)"]
Optional
Field on which to apply the regular expression, if nothing is given it will be checked against
the internal Bytes on the ReadBuffer
Field="_raw"
Optional
Since: 1.1.48

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 35

Allows for the grep -v logic where the regex is inverted
Invert=false
Optional
Since: 1.1.48
Specify the run mode, filter the Events or Extract Fields, by default extracts fields
Filter=false

The rex rule applies a list of regular expressions to a given field, only the first to match will
extract any new fields. Fields can be extracted using named captures or traditional regex
grouping (?P<name>)[^,]+) -> would extract to the current event {"name": "<captured_text>"}
and ([^,]+) would extract to the current event {"0": <captured_text>"}.

Optionally rex can also filter events, selecting only the ones that match any of the user
configured regular expressions.

Let assume we have the following rule:

[rex.myregexes]
Patterns=["(?P<name>)[^,]+),"]
Filter=true
Field="message"

Applied to the following list of events:

[
 {"message":"John, its late"},
 {"message":"I am late"},
 {"message":"I am late again"},
 {"message":"What is going on?"}
]

Would output:

[
 {"message":"John, its late", "name":"John"}
]

Only the first event matches the regular expression, and as such only that event is copied
to the output and named extraction is applied.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 36

2.2.5.3.3 Aggregation Rules

Figure 11 - Aggregation Rule

Aggregation rules are used to reduce the number of events, they can be thought of as a
way, to reduce the cardinality of the input set. Considering we would like to calculate the
average value of a given metric, it would take the input set of any size and produce a single

value representing the average.

Output or recoding rules are also considered under this category, as an example we offer to
the reader the particular case of the Excel Output rule, which is presented below:

Excel Out ###
Converts the current list of events into an Excel xlsx file format
and saves it into the current rb.Bytes
[excelout.savefile]
Optional
Sheet name on the saved Excel file by default Sheet1
SheetName="Sheet1"

This rule is special in many ways, it doesn’t actually change the cardinality of the set, both
input and output sets will have the same number of elements. But the operation it performs,
does indeed belong under the aggregation category. It will process a set of input events,
store them all in a single sheet inside an Excel file, then it saves that Excel file into the
ReadBuffer.Bytes attribute. This effectively reduces to a single entity the set of inputs. Note
this rule doesn’t persist the output in disk storage, it merely serializes into memory. For
persistence, the pipeline should require a new File Output. This type of separation of
concerns allows for greater composability of rules and pipelines. And reduces the limitation
imposed by the minds of the original programmers.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 37

2.2.5.3.4 Generating Rules

Figure 12 - Generating Rule

Lastly, we describe the generating rules, they perform the inverse effect of aggregation
rules. They take a single element and generate a set of events. A common example of a
generating rule is a CSV parser. It takes raw bytes or a string and parses them into multiple
events, for each line inside the CSV a new event will be created. Below we present the CSV
parser spec:

######## CSV #########################
Parse event bytes from CSV to Event
[csv.in]
Should we use the first line as headers?
Headers=false
Alternative to define the column name
Fields=["column1","column2"]

Now consider the following input in ReadBuffer.Bytes:

id,year,month,day,hour,minute,second
1,2020,1,25,3,44,57
2,2020,1,25,3,44,52
3,2020,1,25,3,44,48

And the following rule spec:

[csv.in]
Headers=true

This would generate the following ReadBuffer.Events on the output:

[
 {"id":1,"year":2020,"month":1,"day":25,"hour":3,"minute":44,"second":57},
 {"id":1,"year":2020,"month":1,"day":25,"hour":3,"minute":44,"second":52},
 {"id":1,"year":2020,"month":1,"day":25,"hour":3,"minute":44,"second": 8},
]

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 38

2.2.5.4 PII Detection Engine

The PII detection engine supports multiple techniques to identify PIIs inside semi-structured
documents. It goes from the simplistic regular expression approach to an advanced ML
detection [4]. Since either regular expressions or NERC [4] can lead to high rate of false
positives a DSL [5] for PII detection has been added to the PII detection engine. This DSL
allows for additional restrictions that enable white and blacklisting rules based on meta
information or context. Meta information can be column type specification from SQL
databases, filenames, or source types. By exploiting that meta information, we can reduce
the false positive rate, and tailor the process to document types. If the format of a document

is known before hand, detection rules can be tweaked by users to improve detection.

A normal workflow includes the following steps:

1. Read input data (either from files, URLs, or databases)

2. Define rules to extract dynamic fields

a. Either through regular expressions or custom-made parsers (key=value,

csv, xml, json, etc)

3. Define the rules to transform fields (either add, remove or mutate in place)

a. Can anonymise, encrypt, decrypt, refactor data

4. Write output report to an excel file

Figure 13 - PII Process

2.2.5.4.1 Regular Expressions

As example we provide the regular expressions used to detect mails, zip codes and phone
numbers. Internally we categorize the regular expressions into distinct groups such as
financial (banking related), personal (of the individual, age etc), national (related to national
id cards), technical (ips, urls, macs), and other (anything that doesn’t fit the other categories).
Inside each category a set of regular expressions detect a variety of PIIs. In total about 90

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 39

regular expressions are provided by default to be consumed inside PrivacyNET. More
expressions can be user defined and added manually to a running system.

mail_rex = "Value((?i)([a-z0-9!#$%&*+\\'=?^_`{|.}~-]+@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-
]*[a-z0-9])?))"
zip_rex = 'Value((?i)\b\d{5}(?:[-\s]\d{4})?\b)'
phone_rex='Value(^(?:9[1-36][0-9]|2[12][0-9]|2[35][1-689]|24[1-59]|26[1-35689]|27[1-9]|28[1-69]|29[1256])[0-
9]{6}$)'

2.2.5.4.2 PII Categories

PrivacyNET supports a set of different categories for identifying PII, below is a table with a
few samples of the different categories and rules fields that can be identified.

FINANCIAL PERSONAL NATIONAL TECH OTHER

BANK NAME PASSPORT URL GEO

LOCATION

CREDIT

CARD
ADDRESS DRIVER ID IP DATE

CVV PHONE NIF IPv6 TIME

EXPIRY
DATE

EMAIL SSN MAC CREDENTIALS

Table 1 - PII Categories

The rules can be defined in a domain specific language, which we provide a few examples
below:

Example 1)

Category: Financial

RuleName: card_number

Code: (?-mix:((?:(?:\d{4}[-]?){3}\d{4}|\d{15,16}))(?![\d]) && ValidCreditCard())

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 40

This rule specified that values must match a given regular expression and pass the
ValidCreditCard validation algoritm.

Example 2)

Category: Financial

RuleName: bitcoin

Code: /(?<![a-km-zA-HJ-NP-Z0-9])[13][a-km-zA-HJ-NP-Z0-9]{26,33}(?![a-km-zA-HJ-NP-
Z0-9])/

In this second example we just look for a given regular expression that can match the Bitcoin
well-known format.

2.2.5.4.3 PII DSL Commands

The following list of commands are supported on the domain specific language.

Command Description

AND, OR,
NOT

Boolean operations to combine multiple rules

Value Match a regular expression against the value of a property

Column Match a regular expression against the name of a property

In Check a value is contained in a user defined list of values

WordsIn Check the words of a property value (split by space) are contained in a

user defined list of values

Type Match a regular expression against the type of a property (only
available on structured or semi-structured inputs)

SQLTyPE Match a regular expression against the database type of a property
(only available on SQL inputs)

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 41

ValidNIB Perform the Luhn’s algorithm [6] to check the number is a valid NIB

VALIDNIF Perform the Luhn’s algorithm [6] to check the number is a valid NIF

(Portuguese Tax ID)

VALIDCC Perform the Luhn’s algorithm [6] to check the number is a CreditCard.
Also check the bank prefix

VALIDNISS Perform the Luhn’s algorithm [6] to check the number is a valid Social
Security number

PTAddress Validate with at least 49% certain that a given text represents a
Portuguese address. Check against dataset crawled from the
Portuguese post office and performs statistical text analysis to compute
a confidence score.

ENAddress Validate with at least 49% certain that a given text represents an
English UK address.

MinDigits Check a number has at least n digits

MaxDIGITS Check a number has at most n digits

MinSIZE Check the number of characters of a given text is at least n

MaxSIZE Check the number of characters of a given text is at most n

MINWORDS Check a text has at least n words

Table 2 - DSL Commands

2.2.5.5 Policy Engine

In CyberSANE it was internally agreed DSA would be defined by CNR’s tool from WP6 and
PrivacyNET would implement the required primitives to enforce compliance. Inside the
policy engine the main feature provided by PrivacyNET is the ability to register the retention
period and set call back functions for a user defined data source. Since forcing erasure is
outside the scope of this work, we focus on keeping track of the many used data sources as
well as the retention policies associated with any of them. So first and foremost, it’s a CMDB

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 42

for data sources that can contain PIIs and a notification mechanism through the means of
HTTP call backs, or SQL queries to request a source to delete data that is other than the
policy permits.

Figure 14 - Privacy Data Retention Engine

Both through local configurations and through HTTP API, users of PrivacyNET can save
local policy rules inside the encrypted database. These policies are then frequently polled
by the Scheduler looking for pending jobs. When such a job is detected, the job details are
loaded, and callbacks are executed.

2.2.5.6 Homomorphic Functions

Homomorphic encryption is a large and complex field. In CyberSANE we focused on the
partial homomorphic encryption techniques, that allow users to save data in encrypted
storage and later search that storage without requiring full size downloads or decrypting all
the stored information. Homomorphic search improves security and data privacy, but implies
bigger latencies, higher resource consumption, slower queries, and limited functionalities.

That’s the price of privacy at the current state of the art.

Homomorphic search allows security aware users to encrypt sensitive data, before storing
it on a third-party storage they don’t control [7]. The hard part comes from ensuring the
correct access level and weighing in the resource costs versus the security benefits. For a
user to find the relevant content, it needs to download all content, decrypt it, compare it with
the relevant search criteria and when the right resource is found, it then can search through

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 43

the clear text. This quickly becomes prohibitive both in terms of cost and time, making this
approach infeasible for big data lakes [8].

To make the problem tractable researchers have proposed a generation of index table [9].
The index table keeps track of the words inside documents by creating a reverse lookup or
inverted index. This process increases the computation resources when new documents are
added to the encrypted storage but allow for quicker queries. In the traditional versions the
indexes might require changes when new words are added to existing documents, we work
around those limitation by resubmitting to the inverted index, documents that have been

updated.

We avoid focusing on full homomorphic encryption theoretical discussions and
implementation, to make a practical solution that ensure privacy aware storage.

Partial homomorphic encryption can be exercised based on a number of asymmetric
encryption schemes. These include RSA, Goldwasser–Micali, Benaloh, ElGamal and Paillier
and others [13].

In our approach we keep documents encrypted inside a key-value database. The documents
are encrypted partial homomorphic encryption due to the nature of the task at hand. We
follow largely the work layed out by CryptDB [14], with additional bloom filters and encrypted
reverse document indexes to improve search performance on common use cases. Such as
search by single word or list of words.

The implemented process to save document is as follows:

1. Get the list of unique words found in the text (hides the frequency)

2. Insert them into the bloom filter (speeds up negative word searches)

3. Encrypt each word with deterministic encryption

4. Obtain a hash blake2 or SHA256 of each encrypted word (hides the size of words)

5. Order the list randomly (hides the position in the text)

6. Document to be searched is encrypted with the RSA scheme and the list of hashes

is attached.

Ignoring authentication, queries for text search based on multiple words, work following this
process:

1. The client sends the words too lookup

2. The server checks the bloom filter to ensure words exist in the dataset

3. The server encrypts and hashes the words to be searched

4. The server searches for these hashes in the list and returns the document link if

there is a match

5. The client asks the server to decrypt the document link and downloads the clear text

document

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 44

There are 3 main operations to support homo search:

1) Save a new document

a. Store the document inside a Key Value database with key being the ID and

Value the encrypted document with an encryption key.

2) Delete a document

a. Ask the encrypted storage to delete a document with key.

3) Search for a document based on words inside

Figure 15 – Homosearch

2.2.5.7 Data Anonymization

PrivacyNET provides a data anonymization backend that has a hand-written parser and
lexer that creates an Abstract Syntax Tree (AST) for the PAL (privacy anonymization
language). That AST is processed through a tree walker interpreter which we call the runtime
for PAL. Message passing between AST nodes is performed through shared memory and
all nodes follow the same specifications for accessing data and creating new data. To ease
the usage of the domain specific language, a web frontend with a single page application is
developed to help operators to design the workflows visually and then export the rules in

CAL to a standard format that can be passed into the backend runtime.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 45

Figure 16 - Chimera Web Studio

The anonymisation module provides an API that is able to remotely transform data, by either
performing encryption/decryption or by applying anonymisation techniques such as one-way

hashing combined with k-Anonymity [10]/ l-Diversity [11]/ t-Closeness [12]. These
techniques are realized through the implementation of generalization, masking and
tokenization algorithms, combined with statistical combinatory analysis.

When applying anonymization through ABE, we need to consider the set of features present
in the information being processed. Generically we can split data features into three
categories: identifiers, quasi-identifiers and data. Where identifiers are key values that link
to an individual directly. Quasi-identifiers don’t link directly to an individual but can through

combination with other quasi-identifiers can lead to individual identification.

The techniques leave the remaining data unchanged, and it can be treated independently
from individuals, reducing the risk of identification to negligible levels. The data would then
be virtually indistinguishable from randomly generated datasets.

The standalone GUI is based on the PDMFC’s chimera tool, where a workflow for ABE
(attribute-based encryption) can be leveraged to simplify setting up the required
anonymization rules.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 46

Figure 17 - GUI for rules creation

Regarding anonymization we support the following techniques:

• IP Masking

• Location Generalization (Local -> Region -> Country -> Continent)

• Geo Location Generalization (Reducing the decimal precision)

• Tokenization (replacement with pre-defined list values)

• Masking (replacing part of the content)

• Suppression

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 47

3 PrivacyNET & CyberSANE Integration

In this section, we shall go through the different services provides by PrivacyNET for
consumption inside CyberSANE, either by the core platform or by other CyberSANE
applications.

Visually the main application flow as defined on D2.4 is as follows:

Figure 18 - PrivacyNET workflow inside CyberSANE

From here we can see the principal integration with PrivacyNET are through the features
PCN 1.0, 1.1, 2.0 and 2.1, and the extended functionalities available.

For 1.0 and 1.1 functionalities are made available through the OpenAPI presented in 3.1.1.
For 2.0 we provide Chimera Studio as shown on Figure 17 - GUI for rules creation. For 2.1
we provide a set of reports that can be exported to excel. As an example, we run the PII
detector against a test database and generated a report on the number of PII detected using
the methods presented in page 38.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 48

Figure 19 - Summary of PII report of a SQL database

Figure 20 - Example of report from PII detection by category

3.1.1 OpenAPI Features

The full PrivacyNET OpenAPI specification is around 1000 lines, which make it too big to
reproduce in this document, it is stored in the project git repository and has become a live
document as the API might be improved or changed going forward. We resume this section
by mapping the features specified on deliverable D2.4 with the web endpoints and
description for each API call.

3.1.1.1 PRI-F-010.1 Encrypt Data

Figure 21 - Encrypt Endpoint

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 49

3.1.1.2 PRI-F-010.2 Decrypt data

3.1.1.3 PRI-F-020.1 Anonymization of security incident data

3.1.1.4 PRI-F-020.2 Anonymization of security incident reports

3.1.1.5 PRI-F-020.3 Dynamic Data Masking

3.1.1.6 PRI-F-020.4 Map & Merge Fields

3.1.1.7 PRI-F-020.5 Filter

3.1.1.8 PRI-F-020.6 Validation

3.1.1.9 PRI-F-030.1 Data Encryption

3.1.1.10 PRI-F-030.2 Data Decryption

3.1.1.11 PRI-F-030.3 Transformation

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 50

This operation was scrapped, and no API was provided, has it didn’t fit any mandatory use
case.

3.1.1.12 PRI-F-030.4 Search

3.1.1.13 PRI-F-040.1 PII Detection

3.1.1.14 PRI-F-040.2 PII Redaction / Privacy Rules Workflow Engine

3.1.1.15 PRI-F-040.3 Privacy Rules Operation Metrics

3.1.1.16 PRI-F-050.1 Data Access Management

3.1.1.17 PRI-F-050.2 Save Data Retention

3.1.1.18 PRI-F-050.3 Retrieve Data Retention

3.1.1.19 PRI-F-050.4 Register PII Data Processing

3.1.1.20 PRI-F-050.5 Retrieve PII Data Processing Details

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 51

3.1.1.21 PRI-F-050.6 Notify PII Data Usage

3.1.1.22 PRI-F-050.7 Retrieve PII Data Processing History

3.1.2 Custom pipeline Examples

Noteworthy and exceptional inside PrivacyNet is the ability to create custom pipelines for
data processing, where all rules can be combined dynamically. Sacrificing performance for
flexibility. As such examples are abundant we present 4 examples that were used in the
integration with ShareNet to demonstrate the capabilities, and clarify how the tool can be
useful.

3.1.2.1 Anonymization of lessons learned

This example presents the web endpoint configured to anonymize destination ips through
an ipmask generalization. It will remove the least significant bits from the IP address by
applying a netmask of 255.255.0.0. Consider the following configuration (only the relevant
bits pertaining to the operation in question) as presented below:

Rules.toml

JGET
Since: 1.1.49
Retrieve a value from a JSON field that is arbitrarily deep
[jget.ips]
Field source to retrieve json from, can be the special value _raw to retrieve from rb.Bytes or anything else to
retrieve from each event
Field="_raw"
Field where to store the result
if Field=RawField then we will retrieve set value on rb.Meta[$Dest] else on rb.Events[i][$Dest]
Dest="ips"
Expression to set
Path="anomalies.#.destinationIp"

JSET
Since: 1.1.49
Retrieve a value from a JSON field that is arbitrarily deep
[jset.dst_ips]
Field source to retrieve json from, can be the special value _raw to retrieve from rb.Bytes or anything else to
retrieve from each event
Field="_raw"
Field where to store the result
if Field=RawField then we will retrieve set value on rb.Meta[$Dest] else on rb.Events[i][$Dest]
Value="ips"
Expression to set
Path="anomalies.#.destinationIp"

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 52

ipmask ###
Apply a netmask to an IP addres as means to anonymize the sensitive lower octets
ipmask("192.168.0.1","255.255.0.0") -> "192.168.0.0"
[ipmask.ary]
List of fields to perform ipmasking on
Fields=["__MVVALUE__"]
Subnet to apply the ipmasking
Mask="255.255.0.0"
[mvmap.ips]
Field="ips"
Rule="ipmask.ary"

Config.toml

[http.generic]
Path="/lessons_learned/mask_destip"
Rules=["filein.#infile",
 "jget.ips",
 "mvmap.ips",
 "jset.dst_ips",
 "fileout.#outfile"]

And the following input (lessons_learned.json):

{
 "id": 1,
 "name": "SQL Injections - Input Validation",
 "description": "Input validation\n\nThe validation process is aimed at verifying whether or not the type of input
submitted by a user is allowed. Input validation makes sure it is the accepted type, length, format, and so on.
Only the value which passes the validation can be processed. It helps counteract any commands inserted in the
input string. In a way, it is similar to looking to see who is knocking before opening the door.\n\nValidation
shouldn't only be applied to fields that allow users to type in input, meaning you should also take care of the
following situations in equal measure:\n\n Use regular expressions as whitelists for structured data (such as
name, age, income, survey response, zip code) to ensure strong input validation.\n In case of a fixed set of
values (such as drop-down list, radio button), determine which value is returned. The input data should match
one of the offered options exactly.",
 "assets": [
 {
 "lessonAssetId": 5,
 "id": 25,
 "name": "MariaDB"
 },
 {
 "lessonAssetId": 3,
 "id": 34,
 "name": "Oracle DB"
 },
 {
 "lessonAssetId": 4,
 "id": 26,

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 53

 "name": "PostgreSQL"
 }
],
 "controls": [],
 "threats": [
 {
 "lessonThreatId": 1,
 "id": 10,
 "name": "SQL Injection"
 }
],
 "vulnerabilities": [
 {
 "lessonVulnerabilityId": 2,
 "id": "CVE-1999-0001"
 }
],
 "attackPatterns": [
 {
 "id": 11,
 "timestamp": "2021-04-06 23:06:42",
 "observerProduct": "Encrypted Network Intrusion Detection",
 "observerVendor": "FORTH",
 "ruleId": "0",
 "ruleDescription": "Hydra (Web server login attempt)",
 "ecsType": "ATTACK_PATTERN"
 }
],
 "securityIncidents": [
 {
 "id": 16,
 "timestamp": "2021-04-06 23:16:37",
 "destinationIp": "192.168.56.103",
 "destinationPort": "443",
 "eventSeverity": "Unknown",
 "networkTransport": "tcp",
 "observerProduct": "Encrypted Network Intrusion Detection",
 "observerVendor": "FORTH",
 "ruleId": "5",
 "ruleDescription": "Metasploit (File/Directory scanning to web server in victim machine)",
 "sourceIp": "192.168.56.101",
 "sourcePort": "41367",
 "ecsType": "SECURITY_INCIDENT"
 }
],
 "anomalies": [
 {
 "id": 24,
 "timestamp": "2021-04-10T11:20:51.000Z",
 "destinationIp": "109.99.165.100",
 "destinationPort": "5058",
 "eventAction": "",
 "eventCategory": "Reconnaissance",
 "eventEnd": "",

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 54

 "eventId": "-F3GH45B1aLxeSXNRfTt",
 "eventOutcome": "Unknown",
 "eventSeverity": "Unknown",
 "eventTimezone": "UTC",
 "eventType": "Port Scanning",
 "fileName": "alerts.json",
 "filePath": "/var/sensor/logs/alerts/",
 "hostName": "94d0cb529d714f4389be746117ba4553",
 "hostIp": "158.211.53.52",
 "hostMac": "",
 "message": "This is a demo message",
 "networkTransport": "ftp",
 "observerIp": "158.211.53.52",
 "observerName": "ML Sensor",
 "observerType": "sensor",
 "observerProduct": "SiVi",
 "observerVendor": "Sidroco",
 "organizationId": "KN",
 "ruleDescription": "Machine learning rule",
 "sourceHostname": "snf-16552",
 "sourceIp": "251.134.130.21",
 "sourceMac": "52:54:00:f8:21:4b",
 "sourcePort": "5200",
 "userName": "aut",
 "ecsType": "ANOMALY"
 },
 {
 "id": 25,
 "timestamp": "2021-04-10T11:20:51.000Z",
 "destinationIp": "109.99.165.101",
 "destinationPort": "5058",
 "eventAction": "",
 "eventCategory": "Reconnaissance",
 "eventEnd": "",
 "eventId": "-F3GH45B1aLxeSXNRfTt",
 "eventOutcome": "Unknown",
 "eventSeverity": "Unknown",
 "eventTimezone": "UTC",
 "eventType": "Port Scanning",
 "fileName": "alerts.json",
 "filePath": "/var/sensor/logs/alerts/",
 "hostName": "94d0cb529d714f4389be746117ba4553",
 "hostIp": "158.211.53.52",
 "hostMac": "",
 "message": "This is a demo message",
 "networkTransport": "ftp",
 "observerIp": "158.211.53.52",
 "observerName": "ML Sensor",
 "observerType": "sensor",
 "observerProduct": "SiVi",
 "observerVendor": "Sidroco",
 "organizationId": "KN",
 "ruleDescription": "Machine learning rule",
 "sourceHostname": "snf-16552",

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 55

 "sourceIp": "251.134.130.21",
 "sourceMac": "52:54:00:f8:21:4b",
 "sourcePort": "5200",
 "userName": "aut",
 "ecsType": "ANOMALY"
 }
]
}

Would produce the following output (reduced to show the relevant differences):

{
 "id": 1,
 ...
 "anomalies": [
 {
 "id": 24,
 "timestamp": "2021-04-10T11:20:51.000Z",
 "destinationIp": "109.99.0.0",
 ...
 },
 {
 "id": 25,
 "timestamp": "2021-04-10T11:20:51.000Z",
 "destinationIp": "109.99.0.0",
 ...
 }
]
}

The previous example might be too long to be understood easily as first, so let us break it
down into the most relevant changes and present it with reproduceable linux commands.

Assumptions:

1. Lessons Learned in STIX 2.0 JSON format at path test/data/lessonlearned.json

2. Cat [15], jq[16], curl[17] system tools installed

3. PrivacyNET with the configuration presented above running at localhost:8080

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 56

This reduction of input a output through usage of the excellent jq tool, allows for quick visual
inspection of changes. There a lot to unpack here, lets start at the top with http.generic input
which by convention defines a new http rule inside an http router, that maps a path to a
pipeline. The pipeline rules must be either present inside the rules.toml file or be simple
enough to be defined implicitly. The rules for implicitly defining rules are complex, rule type
dependent and out of scope for this document. We leave the reader with the general intuition
about implicit rule definition, the <rule_type>.<rule_name>([<mandatory args>]). Rule name
is often used as input field and output field.

Next the rules defined would follow the dataflow:

Figure 22 - Http API to scrub lessons learned

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 57

3.1.2.2 Anonymization of assets with inline rules

Pipeline

Command

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 58

Data flow

Figure 23 - Dataflow mask assets

3.1.2.3 Anonymization of incidents

Command

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 59

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 60

Dataflow

Figure 24 - Incident anonymization dataflow

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 61

3.1.2.4 Anonymization of Anomalies

Command

Source

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 62

Testing with Curl

Output

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 63

Dataflow

Figure 25 - Mask Anomalies Dataflow

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 64

4 Conclusions and Future Directions

The PrivacyNET provides the building blocks for anonymization, encryption, homomorphic
search, and privacy policy enforcement inside CyberSANE. The PrivacyNET coordinates
with the components of the CyberSANE system to ensure desired-levels of data protection
for sensitive incident-related information in the context of the envisaged pilots.

The main purpose is to manage and orchestrate the application of the innovative privacy
mechanisms and maximize achievable levels of confidentiality and data protection towards
compliance with the highly demanding provisions of the GDPR in the context of protecting
sensitive incident-related information within and outside CIs. The orchestration approach of
the CyberSANE allows applying the most appropriate security and data protection methods
depending on the user’s privacy requirements, which cover a wide range of techniques
including anonymization, location privacy, obfuscation, pseudonymization, searchable
encryption.

The following table summarizes the feature set:

Functionalities Grouping Services

Anonymization &
Encryption

Format Preserving ABE

Encryption of resting data

Decryption of resting data

Incident Data Redaction

Anonymization of incident data

Anonymization of incident reports

Dynamic Data masking

Map & Merge Fields

Filter & Validate

Homomorphic
Encryption

Privacy Preserving
Transformations

Privacy Preserving Computation /
Transformation

Privacy Preserving Storage / Data encryption /
Data Decryption

Privacy Preserving Search

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 65

Privacy Policy
Enforcement

Security Incident Data Redaction

PII Detection

PII Redaction / Privacy Rules Workflow

Privacy Rules Operation Metrics

Privacy Policy Enforcement

Data Access Management

Set Data Retention

Get Data Retention

Register PII Data Processing

Retrieve PII Data Processing Details

Notify PII Data Usage

Retrieve PII Data Processing History

Table 3 - PrivacyNet Services’ Grouping and Mapping with Component’s functionalities

PrivacyNET supports the most common formats such as JSON and XML, allowing for user
defined taxonomies for data structures. By providing the lower-level interchangeable actions
that can be dynamically defined by users.

As future work we identified a set of improvements that could use the adoptability of the
PrivacyNET by third parties. Namely increasing the number of source connectors for
dominant data players in the current market, for instance the ability to input data directly
from Google Sheets through only an URL and respective access token, or to acquire data
directly from Salesforce APIs, or any other frequently used third party system with a track
record for storing PII and sensitive data. On the opposite side and following the same
rational, it makes sense to extend the list of sink connectors to where data can be exported
to.

Regarding the dynamic nature of processing required, the current anonymization language
is computed through a tree-walking interpreter, which is simpler and quicker to implement
but leaves some performance on the table for tight loop, or high-pressure points. Extending
the interpreter to include a JIT and perform dynamic node replacement directly on the ASTs
would be a worthy endeavour for supporting terabyte and larger datasets. Continuing on the
language front more features could extend its applicability, support for window functions,
generic aggregation functions and user defined functions could make the language able to

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 66

tackle new domains. Albeit at the cost of extra complexity, research into how to keep the
language accessible to new users while retaining its core features, should be fertile ground
for innovation.

In terms of UX improvement, for demos and quick onboarding of new users, having a set of
default pipelines in place, that allows for users to immediately try and experiment with,
without the risk of damaging the system, through a visual web GUI should in our opinion
increase the visibility of the tool outside research projects.

As the core configurations are file based and can be persisted fully to disk, retaining a
common know format, they are well suited to be stored in GIT. This led us to consider a
module system that could support namespaces and import configurations directly from
github.com or GitLab hosted repositories.

On the storage front, extending the current storage primitive from key value store with
encryption support, with the right primitives to store system and audit logs efficiently, would
fill a space in dire need for disruption. As the current open-source solutions are mostly
focused on Elastic Search which is a poor fit for low resource environment. For such
alternative to be possible, we envision a system that can make extensive use of BM25 or
TF-IDF in conjunction with bloom filters and time-based buckets. Creating an engine that
would be performant for time-based filtering and full text search queries.

Lastly, improving auditing capabilities for privacy rules, could improve visibility inside
CyberSANE for potential misuse and provide forensic evidence for analysts to use.

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 67

5 References

[1] Structured Threat Information Expression (STIX), Available online: https://oasis-

open.github.io/cti-documentation/stix/intro

[2] Communicating sequential processes (CSP), C. A. R. Hoare, Communications of the

ACM Volume 21 Issue 8 Aug. 1978 pp 666–677

https://doi.org/10.1145/359576.359585

[3] Portable Operating System Interface (POSIX), Available online:

https://www.opengroup.org/austin/papers/posix_faq.html

[4] Using NLP and Machine Learning to Detect Data Privacy Violations, Paulo Silva,

Carolina Gonçalves, Carolina Godinho, Nuno Antunes, Marilia Curado, 2020,

https://eg.uc.pt/bitstream/10316/95068/1/WORKSHOP_ON_SECURITY_AND_PRI

VACY_IN_BIG_DATA__Camera_Ready.pdf

[5] Domain Specific Languages, Martin Fowler, 2010, Addisson-Wesley,

https://martinfowler.com/books/dsl.html

[6] Luhn’s Algorithm, US patent US2950048A, Hans Peter Luhn, 1960,

https://worldwide.espacenet.com/patent/search/family/003449488/publication/US29

50048A?q=pn%3DUS2950048A

[7] A survey of provably secure searchable encryption, Bösch, C., Hartel, P., Jonker, W.

and Peter, A., 2014. ACM Computing Surveys (CSUR), 47(2), pp.1-51,

https://dl.acm.org/doi/10.1145/2636328

[8] Searchable encryption for healthcare clouds: a survey. Zhang, R., Xue, R. and Liu,

L., 2017, IEEE Transactions on Services Computing, 11(6), pp.978-996

https://ieeexplore.ieee.org/ielaam/4629386/8567855/8066356-aam.pdf

[9] Inverted index based multi-keyword public-key searchable encryption with strong

privacy guarantee, Wang, B., Song, W., Lou, W. and Hou, Y.T., 2015, IEEE

Conference on Computer Communications pp. 2092-2100,

https://www.cnsr.ictas.vt.edu/publication/Wang_2015_INFOCOM.pdf

[10] k-Anonymity: A Model for Protecting Privacy, Latanya Sweeney, 2002, J. Uncertain.

Fuzziness Knowl. Based Syst, pp 557-570,

http://cs.jhu.edu/~sdoshi/jhuisi650/papers/kanonymity.pdf

[11] l-Diversity: Privacy Beyond k-Anonymity, Machanavajjhala, A., Gehrke, J., Kifer, D.,

& Venkitasubramaniam, M., 2006, ICDE,

http://www.cs.cornell.edu/people/dkifer/ldiversityTKDDdraft.pdf

[12] t-Closeness: Privacy Beyond k-Anonymity and l-Diversity, Li, N., Li, T., &

Venkatasubramanian, S. (2007).. 2007 IEEE 23rd International Conference on Data

Engineering, 106-115.

http://www.cs.purdue.edu/homes/ninghui/papers/t_closeness_icde07.pdf

https://oasis-open.github.io/cti-documentation/stix/intro
https://oasis-open.github.io/cti-documentation/stix/intro
https://doi.org/10.1145/359576.359585
https://www.opengroup.org/austin/papers/posix_faq.html
https://eg.uc.pt/bitstream/10316/95068/1/WORKSHOP_ON_SECURITY_AND_PRIVACY_IN_BIG_DATA__Camera_Ready.pdf
https://eg.uc.pt/bitstream/10316/95068/1/WORKSHOP_ON_SECURITY_AND_PRIVACY_IN_BIG_DATA__Camera_Ready.pdf
https://martinfowler.com/books/dsl.html
https://worldwide.espacenet.com/patent/search/family/003449488/publication/US2950048A?q=pn%3DUS2950048A
https://worldwide.espacenet.com/patent/search/family/003449488/publication/US2950048A?q=pn%3DUS2950048A
https://dl.acm.org/doi/10.1145/2636328
https://ieeexplore.ieee.org/ielaam/4629386/8567855/8066356-aam.pdf
https://www.cnsr.ictas.vt.edu/publication/Wang_2015_INFOCOM.pdf
http://www.cs.cornell.edu/people/dkifer/ldiversityTKDDdraft.pdf
http://www.cs.purdue.edu/homes/ninghui/papers/t_closeness_icde07.pdf

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 68

[13] Partially Homomorphic Cryptosystems, Wikipedia, last access on 2021,

https://en.wikipedia.org/wiki/Homomorphic_encryption#Partially_homomorphic_cry

ptosystems

[14] CryptDB: Protecting confidentiality with encrypted query processing, R. A. Popa, C.

Redfield, N. Zeldovich, and H. Balakrishnan, 2011, Proceedings of the 23rd ACM

Symposium on Operating Systems Principles, pages 85–100

https://web.cs.ucdavis.edu/~franklin/ecs228/2013/popa_etal_sosp_2011.pdf

[15] Cat – concatenate files and print on standard output, gnu tool, last accessed on

29/Jan/2022 at https://man7.org/linux/man-pages/man1/cat.1.html

[16] Jq – Json filter tool, cli tool, last accessed on 29/Jan/2022 at

https://stedolan.github.io/jq/manual/

[17] Curl - command line tool and library for transferring data with URLs, 1998, last

assessed on 29/Jan/2022 at https://curl.se/

https://en.wikipedia.org/wiki/Homomorphic_encryption#Partially_homomorphic_cryptosystems
https://en.wikipedia.org/wiki/Homomorphic_encryption#Partially_homomorphic_cryptosystems
https://web.cs.ucdavis.edu/~franklin/ecs228/2013/popa_etal_sosp_2011.pdf
https://man7.org/linux/man-pages/man1/cat.1.html
https://stedolan.github.io/jq/manual/
https://curl.se/

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 69

Annex I – Config Spec
FILE ##
Stanza example for monitoring files
[file.csv]
The filepath to monitor, can be absolute or relative to work dir
Path="in.csv"
Array with the names of the rules to be applied to this input
Rules=["rex.csv","ff1.dstip","hash.srcip","recode.srcip(Extended,EmailAlpha)"]
Array of outputs where processed events will be sent after they go through the pipeline
IMPORTANT: At the moment this array can only have 1 output, having 2 or more will cause random lockups
Outputs=["kv"]
File encoding, by default utf-8 if nothing else selected
Full list available at docs/encode_formats.md
Encoding="utf-8"
Don't keep track in the internal db of the current offset that's already processed
NoTracking=false
Don't monitor file forever, just read once until EOF
BatchMode=false
String Specify the characters that will be considered for an EventBreak, by default "\n"
EventBreak="\n"
Whether of not this input is active
Disabled=false
Random chars that can be used to bypass previously stored states/offsets for a given file url
Useful when the file has been rewritten and it's required for it to be processed from 0 again
Salt
Boolean to specify if the input should be threats as a single file or a folder and all files inside should be
monitored
Folder=false
Max number of bytes to read at a time from the file
BatchSize=65536
Since: 1.1.49
Disable event breaking, this will present all the read bytes in the current batch.
In combination with BatchSize it can be used to read the file in one go, this is useful to process json files
NoEventBreak=false

Network ##
Stanza to capture network traffic on a given local interface
[net.en0]
Required Fields ##
Array with the names of the rules to be applied to this input
Rules=["ff1.dstip","hash.srcip","recode.srcip(Extended,AlphaNum)"]
Array of outputs where processed events will be sent after they go through the pipeline
IMPORTANT: At the moment this array can only have 1 output, having 2 or more will cause random lockups
Outputs=["kv"]
List of field processors to use when decoding data from captured packets
Mostly in the format layer.attribute, but a few shortcuts are provided
as they are used often (proto,src_port,src_opt, time, bytes)
Full list available at: docs/net_fields.md
Fields=["ip.src","ip.dst","src_port","dst_port"]

Include a _packet field with the raw captured bytes
Raw=false
OPTIONAL FIELDS ###

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 70

Name of the interface that we will capture packets from, should be equal to stanza name
net.en0 --> Name = en0
Name="en0"
Used to identify the source type for common data format type (datetime formats, timezone etc)
SourceType="net"
Used to identify which index we prefer the data to be indexed to to
Index="pt_net"
A BPF filter to specify which packets to capture, if not defined will capture everything
(https://biot.com/capstats/bpf.html)
Default = ""
BpfFilter="tcp src port 80"
Whether of not this input is active
Disabled=false

DBConfig - struct to hold database configurations
[db.sitam]
Required Fields ##
User="notroot"
Pass="youwishyouknew"
Host="hostofdb"
Database driver to use, supported:
mysql
psql or postgres
mssql or sqlserver
Driver="mysql"
Port=3306
Database="sitam"
Since 1.1.51
Defines the max number of connections to hold in pool 0 for unlimited
MaxConn=0

SQL Database ##
Stanza do query databases at a given periodicy
[dbin.users]
Required Fields ##
Name of the database stanza to use as source
Db="sitam"
SQL Query to be run
SQL="select id,name,job from users where job = 'XPTO'"
Array with the names of the rules to be applied to this input
Rules=["rex.csv","ff1.dstip","hash.srcip","recode.srcip(Extended,EmailAlpha)"]
Cron expression of when to run this input, with seconds resolution.
This avoid relying on external tools like unix cron, which has at max minute resolution
"0 30 3-6,20-23 * * *" - in the range 3-6am, 8-11pm
"CRON_TZ=Asia/Tokyo 0 30 04 * * *" - Runs at 04:30 Tokyo time every day"
"@hourly" - "Every hour, starting an hour from now"
"@every 1h30m" - "Every hour thirty, starting an hour thirty from now"
"! 0 0 0 * * *" - "Runs at midnight everyday, and when on service start (!)"
Cron="! 0 0 0 * * *"

Optional Fields ##

Name of the stanza, usefull for logging and debugging
Not needs for anything else

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 71

Please name me users to match the stanza name [dbin.users], but you can actually name anything
Name="users"
Used to identify which index we prefer the data to be indexed to to
Index="pt_db_sitam_users"
Array of outputs where processed events will be sent after they go through the pipeline
IMPORTANT: At the moment this array can only have 1 output, having 2 or more will cause random lockups
Outputs=["kv"]
Selected Field that will be used for ordering the processing and batching
OrderField="id"
Boolean to disable input
Disabled=false
Number of rows to process at a time, we default to 10000 not to overload the database with very large requests
Also at the end of sql inputs are normally sql outputs, which when done in large thousands can have serious
impact on BD performance
BatchSize=10000
When through prints additional debug messages
Debug=false
#disable tracking
NoTracking=false
Field to reboot tracking
Salt=""

WinEvent input
Collects winevents from the local machine
[evt.setup]
Name of the LogSource to collect
LogName="setup"

Metrics input
Collects system metrics from the local machine
CPU,DISK,NET,MEMORY,Connections and Process information
[metrics.all]
Metrics=[
 "cpu", # Cpu time consumed
 "cpuinfo", # Cpu version, and spec
 "virtualmem", # Memory used/free
 "disk", # Disk IO counters
 "loadavg", # CPU load average 1,5,15m
 "net", # Net IO Counters by interface
 "connections"] # Connection,src,dst,ports,process pid, type, status

HTTP Input
Since: 1.1.57
The port can be specified on System.Web.Port stanza
[http.in]
Path where the pipeline will be pre-deployed
If there are two equal paths the last one defined will overwrite
Path="/lessons"
Rule pipeline to process
Rules=["rule.name"]

Output stanzas to be used in the input stanzas
[outputs.kv]
Format to write the output in

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 72

"raw" - Writes the bytes was they arrived during the pipeline
Useful for binary data transfers or pcaps

"json" - Formats the ReadBuffer ([]Event) in json as an array of events
[{"key": "value1", "other_prop": 1}, {"key":"value_event2", "other_prop": 2}]

"kv" - Formats the ReadBuffer ([]Event) in key value format
key="value" other_prop=1
key="value_event_2" other_prop=2

"csv" - Formats the ReadBuffer ([]Event) in csv format
key,other_prop
value,1
value_event_2,2

"custom" - Formats the Events using a string template defined on the Template attribute
Format = "custom"
Template to be used on custom output formats
Template="$name is the best journalist in the whole $place"
Magic URLs that point to the right output
Supported Formats
 # "tcp://host:port" - Open a TCP connection to <host> at <port> sends the event bytes there
 # "udp://host:port" - Open a UDP connection to <host> at <port> sends the event bytes there
 # "metago://host:port/path" - Uses HTTP with METAGO event encoding to <host>:<port>/<path>
 # "metagos://host:port/path" - Uses HTTPS with METAGO event encoding to <host>:<port>/<path>
 # "file://local_path" - Write to a local file
 # "pcap://local_path" - Writes a pcap file, only to be used with network packet captures
 # "stdout://" - Write to STDOUT
Urls = ["stdout://"]
OPTIONAL FIELDS ##
Only useful for file outputs, values can be "append" or "write"
Mode="append"

Text
Since: 1.1.59
Static input for testing purposes
[text.name]
Text="My test to be processed"

SourceTypes
Since: 1.1.0
SourceType is a string that defines the type of the source, and configures the time parser to be used
as well as the timefield to be considered as the time of the event
[sourcetypes.sysmon]
Required Fields
Format of the event should be encoded when sharing with other systems
Format="METAGO"
Field to be considered as the time of the event
TimeField="timestamp"
Time parser to be used to parse the time field
TimeFormat="YYYY-MM-DDTHH:mm:ss"

Stanza for internal system configuration
[system.web]

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 73

Disables the web server API
Disabled=true
Since: 1.1.57
Port=8080

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 74

Annex II – Rules Spec
Common to all Rules ###
name of the stanza, use for reference from inputs
Name
enable debug extra verbose
Debug
disable processing this rule
Disabled

########## FF1 ##############
Encrypts or decrypts fields using AES-FF1
The key and tweak are randomly generated on the first run
and saved encrypted on the local database
[ff1.cadev_sim]
Required ##
Fields=["Cliente","ClienteNome","ClienteMorada","ClienteTelefone","ClienteEmail"]
Optional ##
Output fields where the encripted inputs results from Fields will be stored.
If nothing is provided it will default back to Fields
Dests=["Cliente","ClienteNome","ClienteMorada","ClienteTelefone","ClienteEmail"]
Radix of the alphabet to decode
Radix=10
"" - Default no func
"nif" - Removes check digit before encrypt, calc check after
"email" - Formats the output as an email
Check=""
MaxSize allowed after encripting, return error into ERROR_FIELD if exceded
Default = 4096
MaxSize=4096
"encrypt" or "decrypt"
Mode="encrypt"

######### DATE ###############
Export the current date in the defined format
[date.anonDate]
Output format for the date
Format="2006-01-02"
Field in the event where the date will be stored
Field="__DATE__"

######## BUCKET ##############
Takes a list of fields and performs date rounding to
one of the following Durations
"second", "minute", "hour", "day", "week", "month", "year"
[bucket.bin_riscos]
List of fields to be generalized
Fields=["CondutorDataNasc","TomadorDataNascimento"]
"second", "minute", "hour", "day", "week", "month", "year"
Duration="month"
Format of dates / time to be processed
follows golang clever format, 06-year, 01-month, 02-day etc
Format="2006-01-02 15:04:05"

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 75

######### ErrorsStatus ##########
Deprecated: Will be removed when Eval and CAL and mainstreamed
Quick and brainless hack to solve a client's problem
Is equivalent to event[Field] = event[__ERROR__] ? "OK" : "Error"
[errorstatus.anonStatus]
Storage field
Field="__STATUS__"
Value if no errors in the pipeline
Value="OK"
Value if error detected on the pipeline
ErrorValue="Error"

######## CSV #########################
Parse event bytes from CSV to Event
[csv.in]
Should we use the first line as headers?
Headers=false
Alternative to define the column name
Fields=["column1","column2"]

######## KV #########################
Parse event bytes from Key Value format to Event
<key>$KVSEP[$Quote]<value>[$Quote]$FieldSEP$LineSEP
Example
name=value age=12\n

key = name
KVSEP = "="
Quote = ""
FieldSEP =" "
LineSEP = "\n"
Raw = false
[kv.in]
ALL fields are optional with following defaults
KVSEP="="
FieldSEP=" "
LineSEP="\n"
Quote="\""
Offset=0
If true will add field _raw with the original source line per event
Raw=false

####### Excel Parser ############
Parse and excel file in xlsx format, each row to Event
First row is used has headers
Each successive row is considered value
Input is taken from ReadBuffer.Bytes
[excel.bytes]

######## REQUIRE #############
Deprecated: Will be replaced by a generic search / where command
Filters events requiring an array of fields to be present, otherwise event is discarded
[require.ClienteNIF]
Fields=["ClienteNIF"]

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 76

HASH ###########
Apply the select Hash algorithm to a list of Fields
[hash.fields]
Required
Fields=["name","age"]
Optional
Salt value to apply, always the same, doesn't vary by run, field or event
Though that could be extend to vary by event without much pain
Salt=[]
algorithm to apply, one of "MD5","SHA1","SHA224","SHA256","SHA384","SHA512"
Algo string
Radix of the alphabet to use for decoding the field string to bytes
Radix int

Encrypt ############
Apply the select Cipher algorithm to a list of Fields
The key and tweak are randomly generated on the first run
and saved encrypted on the local database
[encrypt.fields]
Required
Array with list of fields to be processed
Fields=["name","age"]
Optional
Salt value to apply, always the same, doesn't vary by run, field or event
Though that could be extend to vary by event without much pain
Salt=[]
algorithm to apply, one of "AES-128-CBC"
Algo string
Radix of the alphabet to use for decoding the field string to bytes
Radix int
Output fields where the encripted inputs results from Fields will be stored.
If nothing is provided it will default back to Fields
Dests=["ClientName","ClientAge"]
"encrypt" or "decrypt"
Mode string

REX Regular Expression ####
Applies a list of regular expressions to a given field,
only the first to match will extract any new fields.
Fields can be extracted using named captures or traditional regex grouping
(?P<name>)[^,]+) -> would extract to the current event {"name": "<captured_text>"}
([^,]+) -> would extract to the current event {"0": "<captured_text>"}
[rex.myregexes]
Required
List of patterns to process by order on each event going through the pipeline
Patterns=["(?P<name>)[^,]+)","can't stop (?P<program>[^]+) from crashing and (?P<sideeffect>[^]+)"]
Optional
Field on which to apply the regular expressio, if nothing is given it will be checked against
the internal Bytes on the ReadBuffer
Field="_raw"
Optional
Since: 1.1.48
Allows for the grep -v logic where the regex is inverted

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 77

Invert=false
Optional
Since: 1.1.48
Specify the run mode, filter the Events or Extract Fields, by default extracts fields
Filter=false

Excel Out ###
Converts the current list of events into an Excel xlsx file format
and saves it into the current rb.Bytes
[excelout.savefile]
Optional
Sheet name on the saved Excel file by default Sheet1
SheetName="Sheet1"

Base64in ###
Decodes the rb.Bytes in the current buffer from Base64 with StandardEncoding and saves it back to rb.Bytes
[base64in.name]

Base64out ###
Encodes the rb.Bytes in the current buffer from Base64 with StandardEncoding and saves it back to rb.Bytes
[base64out.name]

ipmask ###
Apply a netmask to an IP addres as means to anonymize the sensitive lower octets
ipmask("192.168.0.1","255.255.0.0") -> "192.168.0.0"
[ipmask.srcip]
List of fields to perform ipmasking on
Fields=["srcip"]
Subnet to apply the ipmasking
Mask="255.255.0.0"

DB Columns ###
DON'T USE - Work in progress

Will extract the fields and their types from selected database and table
still working out how this will be used by PIIWeb

DON'T USE - Work in progress
[dbcolumns.database]
DB="database stanza name"
Field="tablename"

Recode ###
Change the encoding of a string from a source encoding to a target encoding
Very basic alphabet recoding doesn't change the string native utf-8 encoding
This allows to convert between bases hex to dec etc, up to base 170.
ExtendedAlpha is 170 chars long and the bigest encoding scheme defined.
Optionally users can define their own input ant output alfabet
[recode.fields]
Required Fields ##
Array with list of fields to be processed
Fields=["name","age"]
Internal Alphabet to decode the fields
Name or list of runes to be consider for alphabet

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 78

Available Internal Alphabets are
ExtendedAlpha = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ,-
._'@ÀÁÂÃÄÅÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ!\"#$%&()*+/:;<=>?[\\]^
`´{|}~¦ªº»–�’£°•«"
VisibleAlpha = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ,-._'@"
EmailAlpha = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ,-
._'@+()"
AlphaLower = "0123456789abcdefghijklmnopqrstuvwxyz"
Digits = "0123456789"
AlphaNum = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
InAlpha="ExtendedAlpha"
Alphabet to encode the fields
OutAlpha="Digits"

Fields ###
Filter events' columns to include only the selected Fields
[fields.name]
Array with list of fields to be included on the events
Fields=["name"]

Time ###
Convert a time object to string with a user provided format
If the field name is __NOW__ it will just generate a new time.Now().Local()
[time.now]
Input field with time value to convert to string
Field="run_time"
Format of the output time, default format presented below
Format="2006-01-02 15:04:05.999"
Optional

Where data will be stored if not defined it will fallback to Field value
Dest="myfield"

Time parser###
Convert string to a time object with a user provided format
If the format is %s will convert to unix time, else it will user the golang date format
with default "2006-01-02 15:04:05.999"
[timeparser.now]
Input field with time value to convert to string
Field="run_time"
Format of the output time, default format presented below
Format="2006-01-02 15:04:05.999"
Optional

Where data will be stored if not defined it will fallback to Field value
Dest="myfield"

Rand ###
returns, as an int, a non-negative pseudo-random number in [0,n)
It panics if Min <= 0.
[rand.value]
Field where to store the value
Dest="random"
The minimum int to generate

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 79

Min=0
The maximum int to generate
Max=1000

Str ###
Use a string template to generate a new string
[str.new_string]
Field where to store the value
Dest="newstring"
Template of the string to generate
Variables from the current event can be accessed through $var or ${var}
${var} is required for attributes with non valid identifier chars
C is a valid identifier char if:
(c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c == '_') || (c == '-')
summing it up alphanum + _ + -
Template="text and $variable, even ${weird value names}"

ESOut ###
Saves the current pipeline result to an elastic search database
[esout.savetoelastic]
Required ##
List of fields to save to elastic
this will save {"name": <namevalue>, "age": <agevalue>}
Fields=["name","age"]
ES index
Index="main"
Host="EShost"
Port=9200
Optional ## authentication
User and Pass
User=""
Pass=""

Lookup ###
Static lookup of a field in a map of values
In this example it will lookup the value of Field user_id,
if it matches a key in Map it will save the value in the Map into Event[user_name]
[lookup.values]
Field to check value
Field="user_id"
Field to save the lookup
Dest="user_name"
Static map to check the Field value
Map={
 1= "luis",
 2= "josh",
 3= "maria"
}

CSVLookup ###
Perform a join between existing column and a CSV file

Example
a.csv

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 80

user_id,user_name
1,jose
2,manuel

Event
{"user_id":1} | csvlookup(user_id,[user_name]) -> {"user_id":1, "user_name":"jose"}
[csvlookup.values]
Field to check value
Field="user_id"
Path of CSV file
Path="a.csv"
Fields to export back to the Event, if Outputs is not defined it will fallback to all fields in the CSV
Outputs=["user_name"]

IF ###
Conditional processing of flows
If the evaluation of Condition returns true it will execute next the rule in the True branch,
else the rule whose name is on the False branch, if one is provided
[if.filter]
Condition to be evaluated
Check docs/cal.md for details on the supported scripting language
Condition="$name != nil && $name != \"\""
Name of the rule to be executed if the condition is true
True="ff1.name"
Name of the rule to be executed if the condition is false
False=""

EVAL ###
Evalute a scripting language CAL and store the result in user configured field specified on the Var attribute
Example from below
1) Define fib function
2) call that function with the value of $age
3) save the result in Event["out"]
[eval.cal]
Cal expression to evaluate
Expr="""
def fib(n){
 if (n<2) {
 n
 }else {
 fib(x-1) + fib(x-2)
 }
}
fib(int($age))
"""
Variable to save the result
Var="out"

DBOUT Save to DB ###
Execute an Insert or Update statment constructed from a SQL template with optional Params that will be
retrieve from each Event
[dbout.cadev_out_sim]
Database definition where to connect to
DB="sitam"

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 81

Truncate the output if db column can't store it all, instead of letting the DB deal with it
Truncate=false
Prints the SQL instead of executing updates implies KeepStatus = false
DryRun=false
Prints the prepared statement as SQL query instead of placeholders with args
DrySQL=false
Params to be used as query parameters
Params=["Cliente","ClienteNome","ClienteNIF","ClienteDataNascimento","ClienteMorada","ClienteTelefone","C
lienteEmail","__STATUS__","__DATE__","SimulacaoId"]
SQL to be executed
Query="UPDATE [dbo].[Simulacoes] SET [Cliente] = ? , [ClienteNome] = ?, [ClienteNIF] = ?,
[ClienteDataNascimento] = ?, [ClienteMorada] = ?, [ClienteTelefone] = ?, [ClienteEmail] = ?,
[estadoAnonimizacao] = ?, [dataAnonimizacao] = ? WHERE [SimulacaoId] = ?"
Whether or not to keep tracking of the processed rows
KeepStatus=true

DBLOOKUP ###
Lookup a set of columns from a Database based on an array of common values

Example
If we have Event{user_id: 1} and a database with
table users
user_id,name
1,Luis
Invoking this function with ["user_id"] as Params would yield:
dblookup(user_id) -> Event{user_id:1, name: "Luis"}
[dblookup.sim_by_id]
Database definition where to connect to
DB="cadev"
Params to be used as query parameters, and source values from Event to perform the lookup
Params=["SimulacaoId"]
SQL to be executed
Query=""" SELECT
SimulacaoId,Cliente,ClienteNome,ClienteNIF,ClienteDataNascimento,ClienteMorada,ClienteTelefone,ClienteE
mail
 FROM [dbo].[Simulacoes]
 WHERE (estadoAnonimizacao='OK') AND SimulacaoId IN (?) """

STRING #########
Since 1.1.40
Action to perform common string operations
Operations | ArgCount | Args | Return
TRUNCATE | 1 | int - max number of runes | string - s[:max]
CONTAINS | 1 | string - substring to search | bool - true if field contains substring
HASPREFIX | 1 | string - prefix string | bool - true if field starts with substring
HASSUFFIX | 1 | string - suffix string | bool - true if field ends with substring
INDEX | 1 | string - substring to search | int - index of first substring occurrence
RINDEX | 1 | string - substring to search | int - index of last substring occurrence
LOWER | 0 | | string - field in lowercase
UPPER | 0 | | string - field in uppercase
TRIM | 1 | string - substring to trim | string - field without substring in prefix or suffix
TRIMLEFT | 1 | string - substring to trim | string - field without substring in prefix
TRIMRIGHT | 1 | string - substring to trim | string - field without substring in suffix

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 82

SLICE | 1 or 2 | start, end int | string - s[start:end]

[string.username]
Op="Truncate"
Fields=["username"]
Args=[23]

Replace
Since 1.1.61
Replace a regex match or list of matches with a static string
[replace.str]
In revision 1.63.0 this field was renamed from Field to Fields and contains the array of fields to apply the
replace to
Fields=["query"]
Regex to select the relevant parts
Regex='(\d+)'
Replacement Value
Value="."
Destination Fields, optional, if ommited will fallback to Fields
Dests=["query"]

Pipelines ####
Since 1.1.40
Allow for inline definition of pipelines
currently useful for IF rules
[if.havefun]
True="pipeline.name(csv.rulename,require.rulename2)"

JSONARY ###
Unmarshal json string with the format array of objects [{..},{...}...] into rb.Events []map[string]interface{}
Since 1.1.48
[jsonary.in]
Field where to read the string json from
Field="name"

JSONROW ###
Unmarshal json string with the format array of objects {..}\n{...}\n... into rb.Events []map[string]interface{}
Since 1.1.48
[jsonrow.in]
Field where to read the string json from
Field="_raw"
Since 1.1.56
Specify if the source field should be keep on the Event or removed
KeepSource=false

JSET ###
Since: 1.1.49
Set values in arbitrarily deep json
Below is a quick overview of the path syntax, for more complete information please check out GJSON Syntax.
A path is a series of keys separated by a dot. A key may contain special wildcard characters '*' and '?'.
To access an array value use the index as the key. To get the number of elements in an array or to access a
child path, use the '#' character.
The dot and wildcard characters can be escaped with '\'.
{

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 83

"name": {"first": "Tom", "last": "Anderson"},
"age":37,
"children": ["Sara","Alex","Jack"],
"fav.movie": "Deer Hunter",
"friends": [
{"first": "Dale", "last": "Murphy", "age": 44, "nets": ["ig", "fb", "tw"]},
{"first": "Roger", "last": "Craig", "age": 68, "nets": ["fb", "tw"]},
{"first": "Jane", "last": "Murphy", "age": 47, "nets": ["ig", "tw"]}
]
}

"name.last" >> "Anderson"
"age" >> 37
"children" >> ["Sara","Alex","Jack"]
"children.#" >> 3
"children.1" >> "Alex"
"child*.2" >> "Jack"
"c?ildren.0" >> "Sara"
"fav\.movie" >> "Deer Hunter"
"friends.#.first" >> ["Dale","Roger","Jane"]
"friends.1.last" >> "Craig"

You can also query an array for the first match by using #(...), or find all matches with #(...)#.
Queries support the ==, !=, <, <=, >, >= comparison operators and the simple pattern matching % (like) and
!% (not like) operators.
friends.#(last=="Murphy").first >> "Dale"
friends.#(last=="Murphy")#.first >> ["Dale","Jane"]
friends.#(age>45)#.last >> ["Craig","Murphy"]
friends.#(first%"D*").last >> "Murphy"
friends.#(first!%"D*").last >> "Craig"
friends.#(nets.#(=="fb"))#.first >> ["Dale","Roger"]
[jset.value]
Field source to retrieve json from, can be the special value _raw to retrieve from rb.Bytes or anything else to
retrieve from each event
Field="JsonSourceField"
Field to retrieve the value from
if Field=RawField then we will retrieve the value from rb.Meta else from rb.Events[i]
Value="FieldToRetriveValue"
Expression to set
Path="name.first"

JGET
Since: 1.1.49
Retrieve a value from a JSON field that is arbitrarily deep
[jget.value]
Field source to retrieve json from, can be the special value _raw to retrieve from rb.Bytes or anything else to
retrieve from each event
Field="JsonSourceField"
Field where to store the result
if Field=RawField then we will retrieve set value on rb.Meta[$Dest] else on rb.Events[i][$Dest]
Dest="FieldToRetriveValue"
Expression to set
Path="name.first"

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 84

JDEL
Since: 1.1.49
Delete a value from a JSON field that is arbitrarily deep
[jdel.value]
Field source to retrieve json from, can be the special value _raw to retrieve from rb.Bytes or anything else to
retrieve from each event
Field="JsonSourceField"
Expression to delete
Path="name.first"

Flatten
Since: 1.1.56
Take a deep object like struct and flatten it out
Example:
Maps -> {a: {b: 1, c: 2}} -> {a.b: 1, a.c: 2}
Arrays -> [{a: 1}, {a: 1, b: 2}] -> {"0.a": 1, "1.a": 1, "1.b": 2}
[flatten.field]
Field name to flatten, if the special __all__ field is specified then all record fields are flattened out
Field="__all__"

MVMAP
Since: 1.1.50
Must appear after Rule has been defined
Apply a rule to all elements of and array and return a new array with same cardinality
[mvmap.name]
Field where to apply the map function
Field="ips"
Rule to call for each element inside the array / slice
Rule="clean.ips"

JSONP
Since: 1.1.56
Parse a json str to an Event struct
[jsonp.raw]
Field to use as the source of json string
Field="_raw"
If true the select source field will remain in the event,
If false it will be removed
KeepSource=false

FileIn
Since: 1.1.56
Read a file at a given path and copy contents to Rb.Bytes
Open mode is read
All bytes are fully read in one go
[filein.raw]
The filepath to monitor, can be absolute or relative to work dir
Path="in.csv"
File encoding, by default utf-8 if nothing else selected
Full list available at docs/encode_formats.md
Encoding="utf-8"
String Specify the characters that will be considered for an EventBreak, by default "\n"

D7.2 Specification of the of Privacy & Data Protection (PrivacyNet) Orchestrator

CyberSANE D7.2 Page 85

EventBreak="\n"

FileOut
Since: 1.1.56
Save Rb.Bytes to a file at a given path
[fileout.out]
The filepath where to save, can be absolute or relative to work dir
Path="out.csv"
Format to write the output in
"raw" - Writes the bytes was they arrived during the pipeline
Useful for binary data transfers or pcaps

"json" - Formats the ReadBuffer ([]Event) in json as an array of events
[{"key": "value1", "other_prop": 1}, {"key":"value_event2", "other_prop": 2}]

"kv" - Formats the ReadBuffer ([]Event) in key value format
key="value" other_prop=1
key="value_event_2" other_prop=2

"csv" - Formats the ReadBuffer ([]Event) in csv format
key,other_prop
value,1
value_event_2,2

"custom" - Formats the Events using a string template defined on the Template attribute
Format = "custom"
Template to be used on custom output formats
Template="$name is the best journalist in the whole $place"
Magic URLs that point to the right output
OPTIONAL FIELDS ##
Only useful for file outputs, values can be "append" or "write"
Mode="append"

mask ###
Since: 1.1.58
Apply a mask to an string as means to anonymize the sensitive chars
mask("My Name Is: Charlote","############",true) -> "My Name Is: "
mask("My Name Is: Charlote","############_________",false) -> "My Name Is: ________"
[mask.name]
List of fields to perform masking on
Fields=["name"]
Mask to apply
Mask="############"
If true the final value will have the size of the mask value
If false the final value will have the size of the source field value
TrimRight=false

