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Executive Summary 

Nowadays cybersecurity entails big importance in every aspect of our digital lives. Attacks 
are becoming increasingly sophisticated while the cost of keeping assets safe is raising 
since new, improved protection measures are required. 

One way to deal with cyber threats is by utilizing encryption mechanisms. Encryption is 
widely used today to maintain information safe from unauthorized access but also protects 
data while in transit. In this document several encryption mechanisms are going to be 
described; thus, revealing the most relevant applications of encryption as far as network 
traffic is involved. 

Apart from that, the document deepens into security incidents data transformation and 
normalization techniques. Currently, cybersecurity analysts rely on different solutions and 
tools provided by heterogeneous vendors with reference to security logging, monitoring and 
detection. The presence of distinct solutions in the field of cybersecurity makes the data 
correlation a necessity in order to make the most of it. However, proper correlation can only 
be achieved through the normalization of collected data. In other words, log transformation 
and normalization become essential when dealing with different log manufacturers. 
Otherwise, cybersecurity analyst won’t be able to link information from various sources. 
Normalization is the way to make counter intelligence sharper, more intelligent and effective 
so, its importance cannot be praised enough in terms of saving both time and money. 

The document describes several security incidents data transformation and normalization 
techniques. In addition, it shows how different solutions gather information, what data is 
collected in each case and presents an example of how data is normalized to the proposed 
output format. 
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Chapter 1 Encrypted Network Traffic Analysis 

1.1 Introduction 

The adoption of network encryption is rapidly growing. The 2019 Annual Report of Let’s 
Encrypt1 states that in just four years, global HTTPS page loads have increased from 39% 
to more than 80%2. In 2019, one year after TLS 1.3 been published as an RFC3, IETF reports 
that its adoption is rapidly growing with a 30% of Chrome’s Internet connections to negotiate 
TLS 1.34. Even though network encryption is crucial for the protection of users and their 
privacy, it naturally introduces challenges for tools and mechanisms that perform deep 
packet inspection and rely heavily on the processing of packet payloads. Common 
applications of deep packet inspection are packet forwarding (Rizzo, Carbone and Catalli) 
and l7 filtering5, while it is a vital operation in firewalls, intrusion detection and prevention 
systems678. Typical intrusion detection systems, such as Snort, inspect packet headers and 
payloads to report malicious or abnormal traffic behaviour. In encrypted packets9 though, 
the only information that makes sense is (i) TLS handshake packets and (ii) TCP/IP packet 
headers, since the data transmitted in packet payloads is encrypted. So, even popular 
intrusion detection systems seem to inadequately inspect encrypted connections. The SSL 
Readme page of Snort, for instance, reports that when inspecting port 443, “only the SSL 
handshake of each connection will be inspected”10. 

To overcome the challenges that network encryption introduces in the domain of network 
security, many works employ alternative techniques to identify the nature of the traffic. For 
example, Broadcom’s Encrypted Traffic Management solution intercepts encrypted traffic to 
gain and offer visibility1112. At another end, CISCO’s Encrypted Traffic Analytics solution 
performs network analytics and machine learning to gain insight into threats in encrypted 
traffic without requiring decryption13. In fact, recently, machine learning techniques are 
widely used for traffic classification, network analytics and malware detection (Anderson and 
McGrew) (Lotfollahi, Siavoshani and Zade) (Rosner, Kadron and Bang). Others focus on the 
implementation of real-time traffic identification systems for encrypted networks 
(Papadogiannaki, Halevidis and Akritidis). The majority of these works show that despite 
having encrypted payloads in network packets, we are still able to classify network traffic 
even in a fine-grained manner (M. Conti, L. V. Mancini and R. Spolaor) (Papadogiannaki, 
Halevidis and Akritidis). Packet headers contain information like IP addresses, port numbers 
and packet data sizes. Time-related features, such as flow duration and packet inter-arrival 
times, are also relevant in encrypted traffic analysis and can be easily computed. When 

 
1 https://letsencrypt.org 
2 https://www.abetterinternet.org/documents/2019-ISRG-Annual-Report-Desktop.pdf 
3 https://tools.ietf.org/html/rfc8446 
4 https://www.ietf.org/blog/tls13-adoption/ 
5 http://l7-filter.sourceforge.net 
6 https://suricata-ids.org 
7 https://www.snort.org 
8 https://zeek.org 
9  With encrypted packets, we refer to TCP packets that are secured using the TLS protocol. 
10 https://www.snort.org/faq/readme-ssl  
11 https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management 
12 https://docs.broadcom.com/doc/the-importance-of-broad-cipher-suite-support 
13 https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html 

https://letsencrypt.org/
https://www.abetterinternet.org/documents/2019-ISRG-Annual-Report-Desktop.pdf
https://tools.ietf.org/html/rfc8446
https://www.ietf.org/blog/tls13-adoption/
http://l7-filter.sourceforge.net/
https://suricata-ids.org/
https://www.snort.org/
https://zeek.org/
https://www.snort.org/faq/readme-ssl
https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management
https://docs.broadcom.com/doc/the-importance-of-broad-cipher-suite-support
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
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properly combined, all these packet metadata, can offer valuable traffic insights (Anderson 
and McGrew). 

In the context of CyberSANE and Task 3.3. “Encrypted Network Traffic Analysis”, FORTH 
proposes a methodology to generate signatures for intrusion detection using only packet 
metadata extracted from TCP/IP packet headers. The resulted signatures enable intrusion 
detection even in encrypted network traffic. 

 

1.2 State-of-the-Art in Encrypted Traffic Analysis for Network 
Security 

Popular network intrusion detection systems (NIDS) like Snort14 and Suricata15 utilize pattern 
matching and regular expressions matching algorithms to analyse network traffic. With the 
ever-increasing network speeds, the research community has put effort in improving the 
performance of NIDS using either commodity accelerators, such as GPUs (Vasiliadis, 
Antonatos and Polychronakis) (Vasiliadis, Polychronakis and Ioannidis, MIDeA: A Multi-
Parallel Intrusion Detection Architecture)and parallel nodes (Paxson, Sommer and Weaver) 
(Vallentin, Sommer and Lee) or specialized hardware, such as TCAMs, ASICs and FPGAs 
(Meiners, Patel and Norige) (Sourdis and Pnevmatikatos). However, the majority of these 
works are based on methods that extract content from network packet payloads to match 
suspicious signatures. Traditional deep packet inspection is becoming insufficient for 
encrypted network traffic (e.g., SSL/TLS protocols). 

BlindBox (Sherry, Lan and Popa) performs deep-packet inspection directly on the encrypted 
traffic, utilizing a new protocol and new encryption schemes. PrivDPI (Ning, Poh and Loh) 
reduces the setup delay of BlindBox and retains similar privacy guarantees. (Shone, Ngoc 
and Phai) propose a system that combines deep learning techniques to provide intrusion 
detection. (Tang, Mhamdi and McLernon) present a deep learning approach for flow-based 
anomaly detection in SDN environments, while (Niyaz, Sun and Javaid) utilize deep learning 
in order to detect DDoS attacks in such environments. (Anderson and McGrew) compare 
the properties of six different machine learning algorithms for encrypted malware traffic 
classification. Moreover, (Amoli, Hamalainen and David) present a real-time unsupervised 
NIDS, able to detect new and complex attacks within encrypted and plaintext 
communications. Kitsune is a NIDS, based on neural networks, and designed for the 
detection of abnormal patterns in network traffic (Mirsky, Doitshman and Elovici). It monitors 
the statistical patterns of recent network traffic and detects anomalous patterns. Moreover, 
(Rosner, Kadron and Bang) present a black-box approach for detecting and quantifying side-
channel information leaks in TLS-encrypted network traffic. These techniques identify 
malicious events in the network, by examining the characteristics of the underlying traffic, 
using exclusively machine learning approaches. Many research and commercial solutions 
focus on inspection of encrypted network traffic mostly for network analytics (M. Conti, L. V. 
Mancini and R. Spolaor) (Lotfollahi, Siavoshani and Zade) (Taylor, Spolaor and Conti). 
OTTer (Papadogiannaki, Halevidis and Akritidis) is a scalable engine that identifies fine-
grained user actions in OTT mobile applications even in encrypted network traffic. (Orsolic, 
Pevec and Suznjevic) use machine learning for the estimation of YouTube Quality of 
Experience (QoE). To test their approach, authors collect more than 1k different YouTube 
video traces under different bandwidth scenarios. (Mazha and Shafiq) investigate the Quality 
of Service (QoS) of video in HTTPS and QUIC protocols. The set of features that expose 

 
14 https://www.snort.org  
15 https://suricata-ids.org  

https://www.snort.org/
https://suricata-ids.org/
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usable information is based on (i) network and transport layer header information for TCP 
flows, and (ii) network layer features (based on inter-arrival time, packet sizes, packet/byte 
counts, throughput) for QUIC flows. CSI (Xu, Sen and Mao) infers mobile ABR video 
adaptation behaviour under HTTPS and QUIC using packet size and timing information. 
Finally, (Khokhar, Ehlinger and Barakat) put YouTube under experimentation and perform 
network traffic measurements for QoE estimation using network related features, as well. 
(Ghiëtte, Griffioen and Doerr) demonstrate that it is possible to utilize cipher suites and SSH 
version strings to generate unique fingerprints for bruteforcing tools used by an attacker. 

Network middleboxes or client-side software that aim to inspect encrypted traffic can operate 
by acting as proxies. The common procedure is to terminate and decrypt the client-initiated 
TLS session, analyse the HTTP plaintext content, and then initiate a new TLS connection to 
the destination. (Goh, Zimmermann and Looi, Intrusion detection system for encrypted 
networks using secret-sharing schemes.) (Goh, Zimmermann and MarkLooi, Experimenting 
with an intrusion detection system for encrypted networks.) propose mirroring the traffic to a 
central intrusion detection system, which will be able to decrypt the traffic and perform deep 
packet inspection, yet, without any privacy preserving guarantees. As Symantec states 
“most cyber threats hide in SSL/TLS encryption” (which takes up to 70% of all network 
traffic)16. Symantec Proxies and SSL Visibility Appliance decrypt traffic to support 
infrastructure security and protect data privacy. More specifically, Symantec offers the 
Encrypted Traffic Management (ETM) tool17 that provides visibility into encrypted traffic by 
decrypting part of it; however, this is a technique that could eventually cause privacy 
violations. Haystack enables network traffic inspection on Android mobile devices using a 
mobile application (namely “Lumen”) that is distributable via the usual application stores. 
Haystack offers device-local and context-aware traffic inspection on commodity mobile 
devices. For full functionality even with encrypted network traffic, Haystack’s application 
“Lumen” intercepts the encrypted network traffic via a local TLS proxy. The application 
prompts the user to install a self-signed Haystack CA certificate in the user CA certificate 
store at install time (Abbas Razaghpanah, Sundaresan and Kreibich). 

Aiming to advance the state-of-the-art, FORTH proposes an automatic signature mining 
method for intrusion detection in encrypted network traffic. The majority of works that inspect 
encrypted network traffic exploits machine learning algorithms to examine the feasibility of 
identifying the nature of the traffic (e.g., for network analytics or network security). FORTH’s 
methodology builds on these feasibility results, while at the same time focuses on 
establishing a procedure to effectively generate intrusion detection signatures in an 
automated manner. 

 

1.3 Encrypted Traffic Signatures 

After a careful examination of the literature and during our analysis, we observed that 
specific sequences of packet payload sizes can reveal discrete events that signify an 
intrusion attempt inside a system or a network. In this section, we describe our proposed 
signature language that is used to express such network traffic patterns. 

First, we aim for an expressive but simple enough signature language to enable the 
automated signature mining. While the automatic generation of the signatures is an offline 
process, we aim also to support an efficient signature matching procedure at runtime on live 

 
16 https://docs.broadcom.com/doc/ssl-visibility-en  
17 https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management  

https://docs.broadcom.com/doc/ssl-visibility-en
https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management
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network traffic. Also, we want to minimize the amount of state information that our intrusion 
detection engine requires to store per flow to effectively match traffic patterns across packets 
of the same flow. All the aforementioned requirements led us to build signatures using a 
simple format that can be applied on sequences of packet payload sizes. For the 
implementation of the intrusion detection engine, we will use an automaton, inspired by (Aho 
and Corasick). Thus, we get the privilege of not having to maintain the previously observed 
packets for backtracking, for each incoming packet. Yet, we are expressive enough to 
identify the suspicious events that signatures indicate. 

 

1.3.1 Signature Design and Representation 

 

 

 illustrates some signature examples that we extracted during our analysis. The proposed 
signature language uses a very simple format that is easy to follow. More specifically, when 
a network flow contains one or more sequences of network packet payload sizes which are 
combined with other network traffic characteristics (e.g., port numbers), an intrusion attempt 
event is reported. For instance, when (i) at least 7 different network flows, with the same 
source and destination IP addresses and the same destination port, contain a sequence of 
4 packets with payload sizes 22, 976, 48, 16 bytes respectively, and (ii) the same network 
flows, contain a sequence of 4 packets with payload sizes 52, 68, 84, 84 bytes respectively, 
then our intrusion detection engine reports the existence of a password cracking attempt 
with the Hydra tool18. 

 

Intrusion attempt event Penetration tool Signature Source ports 

SSH password cracking Hydra 22, 976, 48, 16 7 

52, 68, 84, 84 7 

File/directory scanning Dirbuster 608, 80 40 

155, 156 35 

SQL injection Sqlmap 194, 93 140 

Table 1: Signature examples of intrusion attempts 

Figure 1 shows how a sequence of packet payload sizes appears in time within a traffic 
capture. This figure illustrates a password cracking attempt with the “hydra” tool. We observe 
that the corresponding generated signatures from  

 

 
18 https://tools.kali.org/password-attacks/hydra  

https://tools.kali.org/password-attacks/hydra


 

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques   

CyberSANE D3.2 Page 12 of 69 

 describe and express what Figure 1 shows. In detail, the signature for the password 
cracking intrusion attempt reports when at least 7 network flows (with same IP addresses 
and destination port and diversified by the source port) match the packet payload size 
sequences 22, 976, 48, 16 and 52, 68, 84, 84. The packet capture that is presented in Figure 
1 contains 9 different network flows (with same IP addresses and destination port and 
diversified by the source port) and the two packet payload sequences: 22, 976, 48, 16 and 
52, 68, 84, 84, respectively. Packet sequences in Figure 1 are presented in respect with the 
inter-packet arrival times in milliseconds. Each bullet colour represents one network flow 
(diversified by the source port): 

 

Figure 1 Illustration of (selected) packet payload size sequences within a traffic capture of a SSH 
password cracking attempt using the “hydra” tool. 

 

1.3.2 Signature Generation Methodology 

We extract the intrusion signatures from network packet traces using frequent sequential 
pattern mining. More specifically, from our ground-truth sample collection, we detect 
frequent packet payload size sequences that correspond to specific intrusion attempts. 
Unlike other works, our approach does not depend on network statistical measures for the 
encrypted traffic inspection (Anderson and McGrew). In the paragraphs that follow, we 
present our methodology for the automatic signature generation. Also, Figure 2 illustrates 
the workflow of our methodology. 
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First, we process the traffic captures so as to keep only the network packets that are related 
to the malicious activity. All the remaining packets other than the malicious activity under 
examination are discarded. Similarly, we discard retransmitted TCP packets, as well. 

 

Figure 2 Illustration of our methodology workflow. 

Then, we use the joy tool19 to extract per network flow data that are later used for the 
signature generation. More specifically, joy receives as input a packet capture with an 
intrusion event. Joy returns a JSON file with network flow related information, such as the 
sequence of lengths and arrival times of IP packets per network flow, DNS names, 
addresses, TTLs, HTTP header elements and others. For each network flow originated from 
the intrusion event under examination, we retrieve the sequence of non-zero packet payload 
sizes and the packet arrival time. This sequence of non-zero packet payload sizes is later 
used by the signature mining procedure. For the signature mining procedure, we chose to 
utilize a frequent sequential pattern mining technique. 

Frequent sequential pattern mining techniques are used to discover frequent sequential 
patterns that occur in sequence databases. Benefiting from such techniques, in our 
proposed methodology we choose to utilize a maximal sequential pattern mining algorithm. 
Maximal sequential pattern mining is used to extract the frequent longest common 
sequences of network packet payload sizes contained in traffic. Our methodology uses the 
resulted sequences as potential signatures that can indicate an intrusion attempt. The 
resulted signatures are mined using the VMSP algorithm (Fournier-Viger, Wu and Gomariz). 
Finally, we select the maximal sequences that match to the ground truth information that we 
have. For instance, the time window of the intrusion attempt is close (in time) to the 
sequence’s first occurrence inside the network traffic.  

In detail, the process to generate the signatures, as presented in  Figure 2, is the following:  

1. For each packet capture, we note the label that characterizes the intrusion event.  
2. We diversify the packet captures per intrusion attempt event.  
3. We break each packet capture into 5-tuple network flows. Each network flow is 

hashed using the 5-tuple {source IP address, destination IP address, source port, 
destination port, protocol}. Each relevant network flow is now labelled with the 
corresponding intrusion event.  

4. We parse each network flow with the joy tool, that exports the sequences of packet 
payload sizes contained. We keep only the non-zero TCP packets, as explained in 
Section 1.4.1.  

5. We execute the VMSP algorithm to these sequences of packet payload sizes. The 
VMSP algorithm performs maximal sequential pattern mining and reports the longest 
sequences of packet payload sizes found.  

6. We choose the most common longest sequences of packet payload sizes to build a 
signature that will describe the corresponding intrusion attempt event. 

 
19 https://github.com/cisco/joy  

Intrusion events 
traffic collection 

Traffic processing 
and filtering

Per flow data 
extraction

Signature mining
Joy VMSP

https://github.com/cisco/joy
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7. We repeat the process per intrusion event.  

 

In Section 1.4.2, we explain in detail how we collect the ground-truth dataset that contains 
the packet captures that characterize a malicious activity. Each packet capture is labelled in 
the respecting packet capture. This ground-truth dataset is separated into two smaller sets 
randomly. The first dataset contains a 30% of the total packet captures and the second 
dataset contains the remaining 70%. The first dataset is used for analysis and signature 
generation (i.e., training dataset), while the second one is used for testing (i.e., testing 
dataset). In the literature, it is common to use the reverse proportions for analysis and testing 
(i.e., 30% for testing and 70% for training). Yet, we want to stress the effectiveness of our 
proposed methodology. In Section 1.4.3, we show that despite using a small dataset for 
signature generation, our methodology produces effective signatures. The evaluation of the 
signatures is performed in the testing dataset that contains the 70% of the packet captures. 

As already discussed, we use the training dataset to create signatures that will describe a 
malicious activity. The malicious activities that our training dataset contains is presented in 
Table 2. Thus, the generated signatures describe the presented malicious activities 
(characterized by events 1-9). The evaluation of the signatures produced can be found in 
Section 1.4.3. 

 

1.4 Signature Evaluation 

In this section, we demonstrate the expressiveness of the proposed signature language by 
automatically generating pattern signatures for a set of intrusion events and evaluating their 
accuracy. We used 30% (randomly chosen) of the ground-truth packet captures as a 
reference for the signature generation, and the remaining 70% for the accuracy evaluation. 

 

1.4.1 Traffic Processing 

We divide the network traffic collected during the attacks into network flows. A network flow 
is characterized and represented by the standard 5-tuple that contains: (i) the source IP 
address, (ii) the source port number, (iii) the destination IP address, (iv) the destination port 
number and (v) the protocol (e.g., TCP). So, each network flow consists of packets that are 
defined by a certain 5-tuple. 

Since the network traffic that we collect is generated within a controlled and isolated 
environment and the IP address of both machines is known, we can presume that the 
resulted flows in a packet capture indicate the traffic generated by the malicious machine 
during each corresponding attack. 

Furthermore, TCP natively provides numerous mechanisms to detect and bypass 
unpredictable network behaviour, including but not limited to packet loss and reordering 
methodologies. As already mentioned, in our methodology we discard retransmitted TCP 
packets, since such packets do not offer additional information to the flow. In addition, we 
assume that packet payloads are encrypted and thus, our approach proposes processing 
only packet metadata (e.g., packet payload size, packet direction). Packets that do not 
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contain payload are also not processed (TCP ACK packets), since they do not provide any 
valuable information for our methodology. 

 

1.4.2 Ground-truth Dataset Collection 

For the ground-truth collection, we setup an environment with two virtual machines. The first 
machine runs Kali Linux and the second machine runs a vulnerable Ubuntu distribution with 
DVWA20 installed using a self-signed certificate to enable HTTPS connections. The two 
machines are isolated from the network to ensure that no other machine is affected and a 
safe intercommunication between the two machines is established. The Kali Linux machine 
(IP address: 192.168.56.101) serves as the malicious entity that communicates with the 
vulnerable Ubuntu machine (IP address: 192.168.56.103) in order to perform various 
malicious activities (e.g., port scanning, file/directory scanning, password cracking, SQL 
injection). The tshark tool21 is installed on the vulnerable machine and captures the incoming 
network traffic during the intrusion attempts performed by the malicious machine. Figure 3 
illustrates the testbed setup. 

 

 

Figure 3: Illustration of our testbed setup for traffic collection. 

We choose some popular vulnerability scanners to evaluate our methodology. Some of the 
tools used for the intrusion events generation are DIRB22, NIKTO23, SQLMAP24, HYDRA25, 
NMAP26, and METASPLOIT27. More specifically: 

 
20 http://www.dvwa.co.uk  
21 https://www.wireshark.org/docs/man-pages/tshark.html  
22 https://tools.kali.org/web-applications/dirb  
23 https://tools.kali.org/information-gathering/nikto  
24 http://sqlmap.org  
25 https://tools.kali.org/password-attacks/hydra  
26 https://nmap.org  
27 https://docs.rapid7.com/metasploit/  
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• DIRB is a web content scanner that looks for existing (and/or hidden) web objects. It 
basically works by launching a dictionary-based attack against a web server and 
analysing the response. 

• NIKTO examines a web server to find potential problems and security vulnerabilities.  

• SQLMAP is an open-source penetration testing tool that automates the process of 
detecting and exploiting SQL injection flaws and taking over of database servers. 

• HYDRA is a parallelized login cracker which supports numerous protocols to attack. 

• NMAP is a free and open-source utility for network discovery and security auditing. 

• METASPLOIT is a penetration testing software (we use the msfconsole, which is the 
metasploit framework console). 

We perform numerous instances of attacks for different times and days within a one-month 
period. Table 2 presents the events generated. 

Overall, we collected a set of over 120 packet captures. Each individual packet capture 
simulates an intrusion attempt as described in Table 2. For each packet capture, we log the 
start time and end time of each intrusion attempt event. 

# Tool name Event 

1 dirbuster Web content scanning in victim machine 

2 nikto Web server scanning in victim machine 

3 hydra Admin login attempt to web server in victim machine 

4 hydra Root login attempt to web server in victim machine 

5 metasploit Directory scanning to web server in victim machine 

6 metasploit File scanning to web server in victim machine 

7 sqlmap SQL injection to web server in victim machine 

8 nmap Detection of remote services version numbers 

9 nmap OS detection, version detection, script scanning, traceroute 

Table 2: Intrusion attempts to the vulnerable web server. 

 

1.4.2.1 CyberSANE pilots 

In the context of CyberSANE, FORTH will receive ground-truth data from data providers, 
such as LSE, to generate signatures for intrusion detection tailored to their systems. So far, 
FORTH has shared instructions and guidelines on how to generate abnormal traffic (e.g., 
using a penetration tool) in an isolated and protected environment and how to collect network 
traffic. In addition, FORTH has shared a list with the specific information that is required to 
effectively build signatures that will be used for intrusion detection in pilots’ systems. The 
required information is the following: 

• Infected and benign network traffic captures (suggested protocols: TCP, HTTPS, 
TLS) 

• For each infected network traffic capture, the following annotations are required: (i) 
type/name of attack, (ii) attack start/end time, (iii) list of network flows involved in 
each attack 
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1.4.3 Signature Effectiveness 

As already discussed in the previous section, we divide the packet traces by intrusion event. 
Then, we randomly select a 30% of each set to generate signatures, while the remaining 
70% is used for evaluation.  

Table 3 presents the resulting true positive and false discovery rates for each signature that 
corresponds to one of the events from Table 2. Each packet capture in the dataset contains 
only a single intrusion event type (event types: 1-9, Table 3). When a signature reports an 
intrusion event, we compare it to the actual intrusion event. For instance, when a signature 
reports that “web content scanning” probably occurs in a specific packet capture, we 
compare this report to the actual intrusion attempt event. If the intrusion attempt event that 
happens in the specific packet capture is the same as the event that was reported, then we 
mark this report as correct. When an event is correctly reported, we increase the true positive 
counter. If the report is incorrect, we increase the false positive counter for the signature. 

Event # True Positive Rate False Discovery Rate (FDR) 

1 (dirbuster) 100% 0% 

2 (nikto) 100% 0% 

3 (hydra) 100% 11% 

4 (hydra) 100% 11% 

5 (metasploit) 100% 11% 

6 (metasploit) 100% 11% 

7 (sqlmap) 100% 0% 

8 (nmap) 100% 11% 

9 (nmap) 100% 11% 

Table 3: True Positive Rates and False Discovery Rates of the automated signature mining 
methodology. The percentages presented are extracted through the comparison of the results of 

our methodology to the ground-truth dataset. 

The true positive rate of our signature generation methodology is 100% individually for each 
event. This means that the signatures that are generated to report a specific intrusion 
attempt event can correctly identify the existence of this event. For instance, the signature 
that is generated for the identification of event no. 1 “web content scanning in victim 
machine” using the dirbuster tool, correctly reports the existence of such event in every 
packet trace that indeed contains such event (signature TPR for event no. 1: 100%). 

Besides the true positive rate, another metric that we believe is necessary for the evaluation 
of our methodology is the false discovery rate for each intrusion attempt event. Reporting 
intrusion attempt events using only the encrypted network traffic can easily become tricky, 
since the cross- validation is a challenging procedure. A network intrusion detection system 
must be able to report any traffic behaviour that is suspicious, while it is equally important to 
not falsely report events that are not existent in the network. The false discovery rate of our 
methodology is reported in Table 3. False discovery rate is calculated as: 
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𝐹𝐷𝑅 =
𝐹𝑃

(𝑇𝑃 + 𝐹𝑃)
 

where 𝐹𝑃 stands for False Positive and 𝑇𝑃 for True Positive. Our signatures generation 
methodology presents a maximum false discovery rate for some of the intrusion events. 

Minimizing the false positives that an intrusion detection system presents is very important. 
Our signature generation methodology using the frequent pattern mining technique presents 
a perfect true positive rate, with an acceptable false discovery rate (up to 11%). At this point, 
we want to highlight that the false discovery rate that is presented by some events (e.g., 
event no. 3, event no. 5) is negligible, if we consider that these signatures correctly report 
the existence of the tool and the traffic that it generates. Even though the granularity of the 
event is not fine-grained (the generated signature for the hydra tool cannot distinguish 
between events no. 3 and 4), the signature is still able to correctly identify the existence of 
the traffic that the tool generates in a network.  

Finally, we use normal HTTPS traffic samples to measure the FDR for the signatures 
generated. The samples that we used for this experiment are publicly available in the 
Malware Capture Facility Project repository28. In this normal HTTPS traffic tested, the 
signatures that describe the events that previously reported an 11% FDR now result to 0% 
FDR.  

 

1.5 Intrusion Detection Engine Implementation 

A very efficient algorithm that popular signature-based intrusion detection systems use for 
pattern matching is the Aho-Corasick algorithm (Aho and Corasick). Pattern matching is the 
core operation of any deep packet inspection system, such as a network intrusion detection 
system. A deep packet inspection system dives into the network packet payloads in order 
to extract sequences of characters, namely strings. These strings are compared against 
well-known patterns that describe, for instance, the communication between a known 
botmaster with its bots. In our approach, we assume that the network traffic that should be 
inspected by our intrusion detection system contains encrypted payloads. Thus, we do not 
extract any payloads and we only process packet metadata. These packet metadata can be 
derived from the contents of network packet headers. For example, even in a TLS protected 
connection, the packet headers are not encrypted. As we have already mentioned, our 
methodology uses packet metadata like the packet payload sizes (i.e., data transmitted in 
the packet) and packet directions in order to generate signatures. We express the packet 
direction implicitly since a signature will match against one-directional network flows. A 
signature that we produce contains sequences of packet payload sizes. These sequences 
of packet payload sizes must be matched against the incoming network traffic in order to 
report an intrusion attempt event that is described by the corresponding signature. Yet, 
packet payload sizes are integers and cannot be expressed as strings. Thus, integrating 
signatures of packet metadata into a typical signature-based intrusion detection system that 
performs deep packet inspection in packet payloads, is not trivial. In the following 
paragraphs, we describe the implementation of our system. 

 

1.5.1 Efficient Automaton 

 
28 https://www.stratosphereips.org/datasets-normal  

https://www.stratosphereips.org/datasets-normal
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The choice of the pattern matching algorithm is crucial for efficiently matching large data 
streams against multiple patterns. Inspired by the Aho-Corasick string matching algorithm 
(Aho and Corasick), we implement a finite state machine to efficiently match a set of patterns 
(i.e., signatures) against streams of network packets. We extend the Aho-Corasick algorithm 
to enable integer matching, instead of strings, similar to (Papadogiannaki, Deyannis and 
Ioannidis, Head (er) Hunter: Fast Intrusion Detection using Packet Metadata Signatures.)  
(Papadogiannaki, Halevidis and Akritidis).  

The Aho-Corasick algorithm is a very efficient string searching algorithm that matches the 
items of a finite set of strings against an input stream. It is able to match a large volume of 
patterns simultaneously, so its complexity does not depend on the size of the pattern set. It 
constructs an automaton that performs transitions for each 8-bit ASCII character of the input 
text. For our approach, we replace the 8-bit characters with 16-bit values that represent the 
packet sizes. The algorithm builds a finite state machine, resembling a trie with added 
“failure” links between the trie nodes. When there is no remaining matching transition, we 
move through the state machine following the failure links, performing fast transitions to 
other branches of the trie that share a common prefix. In this way, we avoid the expensive 
back-tracking operation, so the algorithm allows the interleaving of a large number of 
concurrent searches, such as in the case of network connections, because the state can be 
preserved across input data that are observed at different points in time by storing a pointer 
to the current state of the automaton, with the state maintained for each connection. 
Backtracking is an operation very expensive since it requires the maintenance of per-flow 
state for previously seen packet payload sizes. In order to boost the resulted performance, 
we build a Deterministic Finite Automaton (DFA) by unrolling the failure links in advance, 
adding them as additional transitions directly to the appropriate node. 

To present our automaton’s characteristics, i.e., the automaton size and the compilation 
time, we generate signature sets out of varying packet sequences, each time increasing the 
number of signatures and the packet sequence length. Figure 4 presents the size of the 
automaton in regard to different signature sets. More specifically, we present the size of our 
automaton, using 500, 1K, 5K, 10K and 50k randomly generated patterns of sequence 
length 6, 8, 10 and 12 packets; for example, the automaton that is generated using 10,000 
signatures, where each signature resembles a sequence of 10 packet sizes, is around 1.5 
GB. Figure 5 presents the compilation time of the automaton based on the same signature 
sets. The compilation time of the automaton does not affect the end-to-end performance 
negatively, since the compilation happens offline and only once. 
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Figure 4: Automaton size. 

 

Figure 5: Automaton compilation time. 

 

1.5.2 Pattern Matching Engine 

To uniformly execute the pattern matching engine across every device in our testbed 
machine (i.e., the main processor Intel i7-8700K, a high-end discrete NVIDIA GTX 980 GPU 
and an Intel UHD Graphics 630 integrated GPU), we utilize the OpenCL framework. Our 
testbed system runs Arch Linux 4.19.34-1-lts and we use the Intel OpenCL 2.1 SDK for the 
Intel devices (i.e., the UHD Graphics 630 GPU and the Intel i7- 8700K CPU) and the OpenCL 
SDK from the NVIDIA CUDA Toolkit 10.2.120 for the NVIDIA GTX 980 GPU. 

In OpenCL, an instance of a given code block and a thread that executes it is called work-
item and a set of multiple work- items is called work-group. Different work-groups can run 
concurrently on different hardware cores. Typically, GPUs contain a significantly faster 
thread scheduler, thus it is recommended to spawn a large number of work-groups, since it 
hides the latency that is introduced by heavy memory transfers through the PCIe bus. While 
a group of threads waits for data consumption, another group can be scheduled for 
execution. On the other hand, CPUs perform more efficiently when the number of work-
groups is close to the number of the available cores. When executing compute kernels on 
the discrete GPU, the first thing to consider is how to transfer the data to and from the device. 
Discrete, high-end GPUs have a dedicated memory space, physically independent from the 
main memory. To execute a task on the GPU, we must explicitly transfer the data between 
the host (i.e., DRAM) and the device (i.e., GPU DRAM). Data transfers are performed via 
DMA, so the host memory region should be page-locked to prevent any page swapping 
during the time that transfers take place. In OpenCL, a data buffer, which is required for the 
execution of a computing kernel, must be created and associated with a specific context. 
Different contexts cannot share data directly. Thus, we must explicitly copy the received 
network packets to a separate page-locked buffer that has been allocated from the context 
of the discrete GPU and can be moved towards its memory space via PCIe. Data transfers 
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(host → device → host) and GPU execution are performed asynchronously, permitting a 
pipeline of computation and communication, something that significantly improves 
parallelism. Moreover, when the processing is performed on an integrated GPU, expensive 
data transfers are not required, since both devices have direct access to the host memory. 
To avoid redundant copies, we explicitly map the corresponding memory buffers between 
the CPU and the integrated GPU. 

Figure 6 presents an illustration of the packet processing scheme in a hardware setup of a 
commodity machine that contains one main processor packed in the same die with an 
integrated GPU and one discrete high-end GPU. As previously explained, to process a 
network packet on a discrete GPU, the steps are the following: 

i. the DMA transaction between the NIC and the main memory 
ii. the transfer of the packets to the I/O bus that corresponds to the discrete GPU 
iii. the DMA transaction to the memory space of the discrete GPU 
iv. the execution of the OpenCL processing kernel and 
v. the transfer of the results back to the host memory. 

Due to the PCIe interconnect inability to quickly handle small data transfers, all data transfers 
are instructed to operate on large batches. The packet processing on an integrated GPU 
follows a shorter path, since the integrated GPU and CPU share the same physical memory 
space, which allows in-place data processing, resulting to lower execution latency. 

 

Figure 6: An illustration of the packet processing scheme in a hardware setup that contains one 
main processor packed in the same die with an integrated GPU and one discrete high-end GPU. 

 

Memory accesses can be critical to the overall performance sustained by our application. 
GPUs execute code in a Single-Instruction-Multiple-Threads (SIMD) fashion, meaning that 
at each cycle multiple threads execute the same instruction. Moreover, they offer support 
for Single-Instruction-Multiple-Data (SIMD) execution when using vector data types (such 
as the ushort16 that is able to store 16 16-bit long values), since the vectorized code is 
translated to SIMD instructions (Shen, Fang and Sips). Furthermore, OpenCL offers the so-
called local memory, which is a memory region that is shared between every work-item 
inside a work-group. This local memory is implemented as an on-chip memory on GPUs, 
which is much faster than the off-chip global memory. Hence, when we execute our engine 
on GPUs, we can utilize this local memory in order to improve the overall performance. 
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The overall architecture of our intrusion detection system is presented in Figure 7. The 
system utilizes one or several CPU worker-threads, assigning each one to a single input 
source (e.g., NIC). 

 

Figure 7: Overview of the packet processing architecture. 

Once a CPU thread receives a network packet, it forwards it to a receive buffer, called RX 
batch (Figure 7). At this point, the receive buffer is filled with packets belonging to one or 
several TCP flows. When the buffer is full, our system generates an execution batch with 
the traffic contained in the receive buffer. The execution batch contains the payload sizes of 
the received network packets, divided and ordered by the corresponding flows. In this way, 
we transform the input traffic to series of payloads with each series containing information 
of a single flow, ready to be processed by our pattern matching engine. Then, we transfer 
the execution batch to the device’s memory address space. In the meantime, the receive 
buffer continues to accept incoming packets, avoiding packet losses. 

We implement the pattern matching engine of our system as an OpenCL compute kernel. 
Unlike other relevant works that follow a packet-per-thread processing approach (Dobrescu, 
Egi and Argyraki) (Han, Jang and Park) (Vasiliadis, Polychronakis and Ioannidis, MIDeA: A 
Multi-Parallel Intrusion Detection Architecture) (Papadogiannaki, Koromilas and Vasiliadis), 
we follow a flow-per-thread approach. This means that each thread reads at least one 
network flow from the execution batch and then performs the processing (Figure 7). 
Whenever a batch of packets is received and forward for TCP flow ordering and processing 
by the device, new packets are copied to another batch in a pipeline fashion. Moreover, to 
fully utilize the SIMD capabilities of the hardware, we represent the payload sizes in the 
execution buffer as unsigned short integers. In this way, we are able to access the data 
using the ushort16 vector data type, as described above, in a row-major order, being able 
to fetch information for 16 packets at once. During the processing, the pattern matching 
kernel uses one ushort value as input, representing one payload size, at each step, in order 
to traverse the automaton. 

If a signature is identified, the engine reports the suspicious TCP flow identifier, packed with 
the packets that matched the signature – using the first and the last packet contained in the 
signature, together with the signature identifier. We encode this information using four ushort 
values for each TCP flow that is identified as suspicious. In this way we minimize the amount 
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of data that need to be transferred back from the device to the host’s DRAM. Moreover, in 
cases where an execution batch does not contain any suspicious flows, the engine does not 
need to perform any other memory transfers except for initially transferring the data for 
processing. Finally, in order to provide support for even further analysis, we keep a copy of 
the packet payload and metadata to the host’s memory until their processing in the GPU 
has finished so their payloads can be examined in combination with the information provided 
by the engine. 

 

1.5.3 Performance Micro-benchmarks 

For the performance evaluation of our implementation, we use a commodity high-end 
machine. The hardware setup of our machine includes an Intel i7-8700K processor with 6 
cores that operate at 3.7 GHz with hyper-threading enabled, providing us with 12 logical 
cores, configured with 32 GB RAM. The main processor is packed with an Intel UHD 
Graphics 630 integrated GPU. In our setup, we use Arch Linux with kernel version 4.19.34-
1-lts. In addition, we use a NVIDIA GeForce GTX 980 GPU. During the micro-benchmarks, 
the pattern matching engine reads the traffic from memory. The performance results that 
are presented in Figure 8, Figure 9   Figure 10 display the median values occurring after 30 
runs per configuration. In these figures, the colour-filled bars indicate the performance 
achieved by the pattern matching engine when the selection of (i) signatures and (ii) input, 
results to a computationally relaxed condition. In the figure, we present the most realistic 
scenario, where we have less than 10% malicious traffic. White-filled bars with borders 
indicate the performance achieved in a computationally loaded condition (i.e., 100% 
malicious traffic), which is the most worst-case scenario. We present the latency using 
different packet batch sizes. The discrete GPU introduces an almost stable latency across 
different batch sizes, close to 2ms. Executing on the integrated GPU results to higher latency 
records, up to 5ms. Executing on the main processor adds very low latency – especially for 
small batch sizes – making it ideal for real-time, latency-intolerant environments. 

 

Figure 8: Latency of the pattern matching engine using the discrete GPU 
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Figure 9: Latency of the pattern matching engine using the integrated GPU. 

 

 

Figure 10: Latency of the pattern matching engine using the CPU. 

 

1.6 Discussion 

In this section, we discuss traffic analysis resistance techniques and we comment about the 
new version of TLS in respect to FORTH’s proposed methodology. 

 

1.6.1 Traffic Analysis Resistance 

Features and characteristics of network traffic that present patterns after encryption (e.g., 
packet sizes and timing), can reveal information about the traffic’s nature and contents. 
Padding packet sizes or transmitting packets at fixed timing intervals can obfuscate the 
behaviour of a communication mean for the preservation of privacy and the reduction of user 
information leakage. AnonRep (Zhai, Wolinsky and Chen) builds on top of anonymity and 
privacy guarantees for the case of reputation and voting systems. TARANET (Chen, Asoni 
and Perrig) employs packet mixing and splitting to achieve constant-rate transmission, 
providing anonymity at the network layer. (Frolov and Wustrow.) propose uTLS that enables 
tool maintainers to automatically mimic other popular TLS implementations to prevent 
censorship that originate from traffic analysis. Walkie-Talkie is a website fingerprinting 
defense approach that produces burst packet sequences that leak less information to the 
adversary. This makes sensitive and non-sensitive pages look the same (Wang and 
Goldberg). Vuvuzela (Hooff, Lazar and Zaharia) and Atom (Kwon, Corrigan-Gibbs and 
Devadas) are scalable systems that employ differential privacy to inject noise into 
observable metadata. Such techniques can circumvent the proposed methodology. Still, 
techniques like traffic morphing add substantial overhead to a system, making it impractical 
for cases, in which the privacy preservation is not a requirement. 
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1.6.2 TLS 1.3 

Expecting the imminent adoption of TLS 1.3, we choose not to perform TLS certificate 
fingerprinting, like other relevant solutions29. The TLS 1.3 handshake is quite different from 
earlier versions of TLS, with a large portion of it getting encrypted (including certificates) 
(Kotzias, Razaghpanah and Amann). Thus, the introduction of TLS 1.3 encourages our 
proposed methodology, in which we simply search for sequences of packet metadata, like 
the packet payload size and the inter-packet arrival time. 

1.6.3 Future work 

Signature generation is a time-consuming procedure that requires a huge amount of ground-
truth data, constantly updated to keep up with modern attacks and maintained for different 
versions of software and operating systems. This work aims to offer contemporary 
signatures that will enable intrusion detection in encrypted networks and enrich the 
functionality of outdated, traditional intrusion detection tools that struggle to keep up with the 
increasing growth of network encryption in communication channels. During the life of the 
CyberSANE project, FORTH will keep on collecting data to produce more signatures, not 
only for penetration tools but also for malware that exist in the wild. The goal of this work is 
the generation of signatures that will enable intrusion detection in encrypted network 
packets. 

 
29 https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html  

https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
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Chapter 2 Transformation and Normalization 

Techniques 

2.1 Introduction 

Nowadays cyber threats are becoming more and more sophisticated. Attackers have a wide 
variety of resources and information at their disposal and even, sometimes, time and money 
are no longer a problem. All these factors outline the importance of trusting security incidents 
data, which should be reliable, structured and easy to understand. Besides, organizations 
need to share information quickly and efficiently, given that incidents should be remediated 
as soon as possible. Here is where transformation and normalization techniques can make 
a difference: they assist analysts in various ways, such as: 

- Allowing an easy share of incident data. 
- Standardizing information gathered to make it more readable for humans. 
- Formatting and structuring the information so it is more recognizable while discarding 

what is not needed. 

To sum up, these techniques allow for a quicker and more coordinated answer when facing 
information security incidents. 

 

2.2 State-of-the-art: transformation and normalization techniques 

2.2.1 CEF 

CEF or Common Event Format is known to be an auditing and logging file format developed 
by ArcSight. This standard is well suited to normalize output for log generating applications 
and devices while offering most important information. Its objective is to improve 
interoperability between security and network applications and devices. Therefore, data can 
be gathered and correlated with no effort. Amongst its main features are: 

• Text-based format. 

• Extensible. 

• Possibility of supporting multiple device types. 

• It does not determine ID for events generated by devices. Actually, devices and 
applications are responsible of this task. 

 

The syntax for log records is made up of a standard prefix or header and a variable 
extension, while grouped in key-value pairs. In detail: 

 

Prefix contains both date and hostname: 

 

Jan 18 11:07:53 zurich message 
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Then, the variable extension of the message should include various fields separated by a 
pipe (“|”) with the following structure: 

 

CEF:Version|Device Vendor|Device Product|Device Version|Signature 

ID|Name|Severity|Extension 

 

Where: 

 

• Version (integer) or identifier of the CEF format. It can be used to better understand 
what the structure will be, i.e., what are the fields included in the register. 

• Device vendor, product and version or string that helps identifying which is the device 
responsible for sending the report. 

• Signature ID or identifier for each event. There cannot exist two equal identifiers. 
This field is quite important given that provides additional information about the type 
of event reported. 

• Name: this field is a string which provides a description of what the event consists 
of. 

• Severity field (integer) provides information about how critical an event is. It is 
evaluated in a scale which varies from 0 (least significant event) to 10 (more critical 
event). 

• Extension: the field is a collection of a variable number of key and value pairs. 

 

CEF format can be implemented on various types of devices: 

• Cloud: in this case, the provider must implement the SmartConnector for ArcSight 
Common Event Format REST. 

• On-premise: the device is required to implement the ArcSight Syslog 
SmartConnector. 

 

Finally, CEF must be encoded in UTF-8 format. This means that: 

- Spaces are valid. 
- Any kind of pipe (|) used must be escaped with a backslash. This is to be done only 

in the header but not in the extension. 
- Other symbols that should be escaped are backlash (\), equal sign (=) and multi-line 

symbols such as (\n) or (\r). 

 

A real example of CEF would be the following: 

 

Dec 18 20:37:08 <local0.info> 10.217.31.247 CEF:0|Citrix|NetScaler|NS10.0|APPFW|
APPFW_STARTURL|6|src=10.217.253.78 spt=53743 method=GET request=http://vpx247.ex
ample.net/FFC/login.html msg=Disallow Illegal URL. cn1=233 cn2=205 cs1=profile1 c
s2=PPE0 cs3=AjSZM26h2M+xL809pON6C8joebUA000 cs4=ALERT cs5=2012 act=blocked 

 

 

2.2.2 STIX 
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STIX or Structured Threat Information eXpression is a collaborative, standard and structured 
language employed to represent and share cyber threat information including both incidents 
and threats. 

 

Nowadays, any organization is expected to keep and update information about threats, that 
is, cyber threat intelligence. This usually includes different past attacks and vulnerabilities, 
actions that could potentially lead to recognize these attacks as well as mitigation strategies. 
Therefore, any company can make use of STIX to describe and store cyber threat 
intelligence information. STIX can assist organizations when sharing cyber threat 
intelligence with providers, partners or associates, resulting in a stronger net of information, 
more structured and organized. At the same time, STIX is currently used by analyst to 
recognize patterns that could potentially indicate threats. 

STIX provides a way to structure cyber threat information and helps improving 
interoperability. Typical elements of the architecture joined by STIX include the following: 

- Incidents or occurrences of malicious actions. 
- Adversary TTPs (Tactics, Techniques and Procedures). Some examples of these 

would be malware, exploits or attack patterns. 
- Cyber Threat actors, campaigns and initiatives. 
- Indicators. 

According to MITRE, all these elements are tied together with STIX architecture: 

 

 

Figure 11: How STIX can relate cyber threat information (MITRE) 

 

There are two main modes when using STIX: 

1. Manually: this mode requires nothing more than an XML editor. 
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2. Programmatic: a bit more complex, it will be necessary to employ Python and Java 
bindings as well as some Python APIs. 

STIX can be labelled as transport-agnostic, i.e., neither structure nor serialization depend 
on a specific transport mechanism. When willing to share STIX objects, it is quite useful to 
use TAXII platform (Trusted Automated Exchange of Intelligence Information). TAXII has 
been tailored to transport STIX objects specifically. 

STIX information model employs various types of data, some of them are: 

• Boolean (true/false) 

• External-reference (reference to an external content) 

• Identifier (for a STIX Domain Object) 

• String 

• Timestamp 

• List (sequence of values ordered) 

 

2.2.3 IODEF 

IODEF (Incident Object Description Exchange Format) defines a format employed to share 
computer security information amongst the actors involved, typically CSIRTs. Messages are 
presented in a human-readable way, i.e., not in machine format. It makes use of XML 
language and encodes information about networks, hosts and services running on systems. 
XML helps when defining a framework for data encoding due to its extensibility: various 
character encodings can be defined easily. IODEF aim is to improve communication 
between CSIRTs by means of sharing structured information about incidents. Therefore, 
some of its advantages can be summed up as: 

1. Less resources are required to process incident data. 
2. Less effort is needed to normalize security information. 
3. A common format is provided to share information and incident handling. 

 

It is necessary to bear in mind that: 

• IODEF has been designed and was created as a transport model, i.e., it is not the 
best way to store data. 

• Incidents can be defined in many ways. Although IODEF is credited to be flexible 
enough, it does not impose one strict incident format to be adopted. Incidents are 
quite different from each other so there would be useless to try to homogenise them. 
Flexibility to describe different kinds of incidents is vital. 

• IODEF is compatible with IDMEF (Intrusion Detection Message Exchange Format), 
which has been developed for Intrusion Detection Systems (IDSs). 

 

IODEF is composed of the following fields: 

- IncidentID or incident identification number. 
- AlternativeID: this ID should be used by other CSIRTs rather than the one which 

defined and labelled the incident. 
- RelatedActivity: this field should include all IDs from other incidents related. 
- DetectTime, that is, when was the incident first detected. 
- StartTime and EndTime: both fields store information of when did the incident start 

and end. 
- ReportTime: similar to the previous one, but this time when was the incident reported. 
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- Description of the event. 
- Assessment (of the event). 
- Method: this field should include all those techniques employed by the attacker. 
- Contact information of any group which may be engaged in the incident. 
- EventData: the aim of this field is to store a description of the events tied to the 

incident. 
- History or log of the actions, events and noticeable things that happened while the 

incident was being managed. 
- AdditionalData. 

 

2.2.4 Other options to normalize data 

The most commonly used, maybe, transformation technique to normalize values on a similar 
scale is the min-max normalization. It is preferred in occasions where the approximate 
upper and lower bounds of the data come with no -or only a few- outliers which are also 
distributed uniformly. This type of normalization techniques are also known as “scaling to a 
range” (Google Developers, 2020), since it involves the conversion of natural range values 
into a standard, fixed, and easily readable range of values (i.e., between 0 and 1). Regarding 
the cyber-security domain, prominent min-max normalizations have found application on 
transforming the input data of unsupervised deep learning approaches for network intrusion 
detection purposes (Alom & Taha, 2017), but also contributing to the identification and 
aggregation capabilities of Dark Web analysis tools like the BiSAL (Al-Rowaily, et al., 2015). 
One more popular variation of scaling lies to the statistical z-score transformation which is 
able to identify how a value varies from the mean in terms of standard deviations. This 
normalization technique is useful for datasets with a few only outliers, where a couple of 
works over the last few years have either integrated or implemented promising and novel 
techniques, respectively. (Gashteroodkhani, et al., 2019) presented a z-score time-time 
matrix solution for the protection of microgrids, while (Meira, et al., 2020) proposed the 
combination of z-score and min-max transformations as the medium to evaluate the 
performance of unsupervised techniques in cyber-attack anomaly detection. 

Apart from the min-max and z-score normalization techniques, the logarithmic 
transformations are another area of normalizations which can be used to narrow down a 
wide range of dataset values by computing their log. This type of normalization is quite 
efficient in those cases where the data which have to be normalized are influenced by many 
independent factors and there are a few only values with many points. Due to the fact that 
the log scaling procedure greatly changes the distribution itself, all these data distributions 
are also known as power law distributions. The outcome of logarithmic transformations has 
been proved to improve the linear data transformation techniques met in zero-day attacks 
tools once they are combined with the appropriate anomaly detection techniques (Aleroud 
& Karabatis, 2013). Furthermore, this kind of transformations could be also used to 
normalize the events and alerts generated by the probes of specific Critical Infrastructures 
(Di Sarno, et al., 2016), enhancing in this way their de-facto security information and event 
management systems. On the other hand, there are cases where all values of a dataset, or 
the values coming from different tools, could be benefited by normalizing them using a 
square-root transformation. Typical use cases are met in variables engaged with Poison 
distributions (Bartlett, 1936; Freeman & Tukey, 1950) where several enhancements have 
been presented aiming to extend square-root applicability to more statistics data areas 
(Almeida, et al., 2000; Molina, et al., 2017). At this point, it is worth noticing that values with 
negative numbers have to be specially treated by adding a constant variable, sufficient 
enough to move the minimum possible value of the distribution above zero. 
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However, if the provided data set includes extreme outliers, then all of the afore-
mentioned normalization techniques tend to suffer both in terms of performance and training 
stability. For these reasons, the application of a feature clipping normalization technique 
is usually preferred and conducted either before or after other normalization procedures. In 
generic, a feature clipping takes into account all the feature values belonging above or below 
a certain value, and reallocates them to a predefined and fixed value. Feature normalizations 
have been used before as the medium to predict cyber-security incidents of network-level 
malicious activities (Liu, et al., 2015), while an even recent study (Ferreira, et al., 2019) 
explored feature normalization techniques in the context of a ML-based insider threat 
detection tool, aiming to evaluate and improve its performance on different classifiers. Last 
but not least, (Box & Cox, 1964) presented another family of power transformations which 
were able to detect the optimal normalizing transformation for different variables by simply 
raising numbers to an exponent. Box-Cox normalization techniques have been widely 
adopted and proved their efficacy in various domains of interest as an alternative 
methodology in data cleansing (Osborne, 2010). On such occasions the quantitative 
analysis of data was quite inferior and impractical when it was undertaken by the most 
commonly used transformation techniques like the min-max, z-score, and square-root 
(Osborne, 2002). 

 

2.3 Overview of Security Monitoring Devices 

2.3.1 Devices 

2.3.1.1 SiVi (SID) 

SiVi is a human-interactive visual-based anomaly detection system that is capable of 
monitoring and promptly detecting several devastating forms of security attacks. The tool’s 
novelty lies on the development of intuitively visualization graphs capable to offer a quick, 
reliable, and intuitively overview in the network. In comparison with other tools that offer a 
simple presentation of the traffic inside the network, SiVi uses pre-trained neural networks 
that can identify different cyber-attacks. 
 
SiVi implements a series of data visualization techniques, including both standard 
visualization methods (graph lines, bars, columns, etc.) and advanced visualization graphs 
(activity gauge, dependency wheels, etc.) aiming at providing the administrator with a 
complete anomaly detection ecosystem. Tables with detailed information regarding the 
network status also offer a thorough status of the system. SiVi also implements a series of 
Machine Learning (ML) algorithms, realizing both supervised and unsupervised techniques 
in order to create security events and timely inform the CCI operator for security attacks with 
devastating results. The ML algorithms are periodically updated with new attack taxonomies 
offering a constantly growing layer of protection. SiVi constantly monitors the network, 
capturing and analysing the transmitted packets while seeking for inconsistencies and 
anomalies at the tactical and the operational layer of the CII environment. More specifically, 
SiVi combines two different functionalities that are described below. 
 

1. The first functionality is the Security monitoring and analysis mechanism (an IDS 
tool) which means it combines different sensors in different layers. In the network 
layer, SiVi uses the Suricata as a sensor, and several custom Machine learning (ML) 
sensors for the monitor and analysis of different communication protocols, while in 
the host layer it leverages the functionalities of the OSSEC Server. Thus, it collects 
security logs from all these sensors and transforms them into security event (by 
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mapping them in a unified format, Appendix 1). Figure 12 presents a high-level 
architecture describing this process. 

 

Figure 12: SiVi Security monitoring and analysis mechanism 

In the network level the sensors (Suricata and ML sensors) receive network packets 
that are converted into network flows as an input. These flows are analysed and 
eventually each sensor results a security log to inform the tool operator. In the case 
of host layer sensors, the given input refers to logs coming from the hosts (e.g. 
syslog, eventlog, snort) while the output of the sensors refers to security logs (alerts 
in OSSEC terminology). All these security logs coming from different sensors will be 
translated into a unified security event (Appendix 1) to be easily interpretable from a 
correlation engine (not included in SiVi). Finally, the collected security events will be 
depicted on SiVi’s dashboard. 

2. The second functionality provides the Visual Analytics (Anomaly Detection). In this 
part, SiVi analyses network flows through pre-trained neural networks that can 
identify different cyber-attacks in order to detect anomalies to the network level and 
the communication between the network assets. The network flows are captured via 
a network monitoring sensor and are used as an input to pre-trained anomaly 
detection models to identify malicious flows. The results are depicted to the SiVi 
dashboard by allowing the users to create custom widgets by using different fields 
of the anomaly detection procedure. Figure 13 presents a high-level architecture 
describing the previous process. 

 

 

Figure 13: SiVi anomaly detection mechanism 

 

SiVi contains a user friendly, uncongested dashboard providing useful information to the 
SiVi users. Its near real-time nature formulates SiVi as a tool capable to be used in everyday 
activities, since the integration with existing databases of attacks can classify the tool on the 
tactical level of the enterprise. 
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2.3.1.2 Encrypted Network Traffic Analysis (FORTH) 

As it is stated in the description of Task 3.3, the goal of the tool is the analysis of encrypted 
network traffic for specifying patterns that signify the existence of suspicious and malicious 
activities online, taking also into account the outcomes of T3.1. In this task, existing network 
traffic, payload-independent classification techniques on identifying traffic patterns, which 
originate from packet metadata (such as frequent sequences of packet lengths and inter-
arrival times) available in encrypted network flows, will be investigated and adopted. The 
resulted patterns will be processed in order to build a representation format that will assist 
the unified integration in T3.5. The outcome of this step will provide insight on the proper 
metadata handling and processing in order to produce network signatures that will be used 
in order to enrich current network inspection systems’ functionality. The network signatures 
will be produced using a subset of a ground-truth malicious traffic dataset and will be then 
tested against the remaining traffic samples. 

 

In the next paragraphs, we present the design of FORTH’s Encrypted Network Traffic 
Analysis tool, which (i) is able to identify suspicious and malicious network activities even in 
encrypted networks and (ii) will serve as a LiveNet component in the CyberSANE 
architecture. 

 

First and foremost, our tool’s operation is divided into two distinct, asynchronous and 
independent parts. 

1. The first part is the offline analysis operation, where malicious network traffic traces 
are analysed in order to extract meaningful information. More specifically, FORTH 
investigates (i) which network packet metadata are able to expose the nature of the 
traffic (e.g., a cyber-attack) and (ii) how we can handle, express and process these 
metadata to extract signatures that will indicate an attack or another network related 
event. This means that network traffic traces, which are known to contain malicious 
behaviour are analysed, and network packet metadata sequences that can indicate 
this behaviour are extracted. 

2. Then, these packet metadata sequences are expressed into signatures using 
FORTH’s proposed signature language. Examples of the proposed pattern language 
can be found in Section 1. 

 

The output of the offline analysis part (i.e., signatures) is then delivered to the intrusion 
detection engine (second part). The intrusion detection engine monitors network traffic 
against the signature set and reports any matches that could signify malicious or suspicious 
behaviour (e.g., a cyber-incident). The reports are logged and printed as text in the standard 
output along with periodic statistics of the processing operation. An example of the intrusion 
detection engine’s output is presented in Figure 14. The output of the intrusion detection 
engine can be verbose or not. If we wish to get fine-grained information about the signature 
matches, we choose the verbose output, which prints information about the signatures that 
matched and information about the network flows that triggered the matches and indicate a 
potential suspicious activity. More specifically, for each signature match, our tool reports the 
signature (i.e., contains the signature id, the signature pattern, the signature length (number 
of items per sequence) and signature details (e.g., attack type, name, CVE, URL reference, 
etc.) and the network flow 5-tuple (i.e., the source IP address, the source port, the 
destination IP address, the destination port and the protocol). 
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Figure 14: Output of the Intrusion Detection Engine 

 

At its current form, FORTH’s tool prints the results in the standard output as plain text.  

 

2.3.1.3 GLORIA (S2) 

GLORIA is a platform developed with the aim of managing security incidents and 
cybersecurity threats by means of correlating events. It is based on SIEM (Security 
Information and Event Management) tools but goes one step beyond, providing extensive 
monitoring and data treatments in two ways: 

1. Employing advanced intelligence correlation techniques to fight threats. 
2. Using orchestration mechanisms to achieve higher efficiency for the IRTs. 

 

Amongst reasons to employ GLORIA, there are the following: 

✓ Massive security incident data processing with little effort. 
✓ Ability to aggregate multiple sources, i.e., not being restricted by high number of 

inputs. 
✓ Correlation can be performed either by Gloria or by the device which provides the 

information. 
✓ Possibility to reduce number of alerts by means of employing previously aggregated 

information. 

 

Gloria has been designed as part of an ecosystem or group of Spanish cybersecurity 
systems and could help security analysts in several ways. When integrated in this team of 
systems, Gloria can share security event information as well as gathered data. The tool can 
provide some functionalities such as: 

• Security incident information gathering based on both NIDS and HIDS. 

• IT and OT monitoring. 
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• Counter-intelligence to fight cyber threats. This is done by means of data correlation. 

• Command shell to manage the platform available if needed. 

• Reduced response time and reduction on the amount of time a human analyst is 
needed. 

 

GLORIA has been designed to process events with a funnel model while in touch with other 
cyber security components. The idea is shown in Figure 15: 

 

 

Figure 15: Event processing model (GLORIA) 

 

Finally, GLORIA can identify and classify encrypted streams. To achieve that, it makes use 
of techniques to analyse encrypted network traffic. Sometimes, it also relies on other tools 
such as CARMEN (detection of APTs) and L-ADS (Live-Anomaly Detection System). 

 

2.3.1.4 ATOS XL-SIEM 

This tool is made up of two components: 

1. XL-SIEM or Cross-Layer SIEM 
2. L-ADS or Live-Anomaly Detection System 

 

2.3.1.4.1 XL-SIEM 

The objectives of a SIEM are various. Some of the most important could be the following: 

• Gather and collect security events in real time 

• Aggregate data from various and diverse sources 

• Consolidate and correlate data 

• Alert and report in concordance with regulatory compliance 
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Although different vendor’s SIEMs can be designed with different architectures, its purposes 
are quite similar. With regard to data flow, XL-SIEM follows the following pattern: 

 

 

Figure 16: Data flow for XL-SIEM 

 

 

Figure 17: XL-SIEM Architecture 

 

The SIEM is based on three components: 

1) XL-SIEM Agent: responsible for the event collection, normalization and transfer to 
the XL-SIEM Engine for its processing. 

2) XL-SIEM Engine: running on Apache Storm, it’s responsible for the analysis and 
processing of the events collected by the XL-SIEM Agents, and the generation of 
alarms based on a predefined set of correlation rules or security directives. 

3) XL-SIEM Dashboard: responsible for the visualization of data in the web graphical 
interface (graphical charts, alarms, security events, etc.). 
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Besides these components, the SIEM relies on the sensors to gather information. XL-SIEM 
works fine with the following sensors: 

• Atos Net Tools (DNS Traffic Sensor): detection of botnets, DNS Amplification Attacks 
(DoS), Brute Force Attacks 

• Atos L-ADS 

• Snort / Suricata (NIDS): Detection of port scanning, brute force attacks, DoS, 
malware signatures in the traffic, Inspection of http traffic 

• OSSEC (HIDS) 

• Firewalls: NetFilter / Cisco. 

• Snare (Windows): Unusual activity (brute force login attacks), Data tampering 
(privilege scalation), SQL injections  

• Nagios: DoS (RAM, CPU% usage, nº processes…) 

• Arpwatch: Detection of changes in MACs/IPs (not suitable for DHCP) 

• Honeypots: Dionaea, Conpot (Modbus) 

• SCADA / Modbus Attacks 

 

Finally, an example of XL-SIEM input, in this case from Snort, would be the following log: 

 

(Snort raw log) 

 

07/07-17:04:36.504799 [**] [1:2018489:3] ET SCAN NMAP OS Detection 

Probe [**] [Classification: Attempted Information Leak] [Priority: 

2] {UDP} 5.225.218.36:49743 -> 212.34.151.211:40560 

 

2.3.1.4.2 L-ADS 

L-ADS is the Live-Anomaly Detection System developed by ATOS. Unlike other systems, 
which are based on predefined rules and patterns, L-ADS employs unsupervised machine 
learning to model patterns of normal traffic and identify abnormal network behaviour of 
devices based on the deviation from the normal operation model. The approach in this case 
is, then, NetFlow based. 

 

Another important feature of L-ADS is that it has been tested with real, legitimate dataset. 
This approach was considered the most effective way to try the L-ADS. Results show a 
promising approach using multiple features, future work will include research to reduce false 
positives by incorporating more complex features. 

 

Its architecture can be shown in Figure 18: 
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Figure 18: L-ADS architecture 

 

The Anomaly Detection System can work in several different ways such as the following: 

✓ clean: delete all models stored in the database. 
✓ capture: store in .JSON files the NetFlow traffic received; 
✓ train: generate the models and store them in the database. 
✓ predict: test the models against text files. 
✓ monitor: evaluate in real time the NetFlow traffic received. 
✓ exit: close the application. 

 

What data can L-ADS gather from NetFlow? 

• Number or incoming/outgoing connections from, to or between servers running the 
applications; 

• Size of the packets sent/received; 

• Duration of the connections established between servers or between clients and 
servers; 

• Source/destination IP addresses and ports of the connections; 

• Information related to the protocol or application relevant for modelling its behaviour 
(e.g., URL or function invoked by the user) recovered from the application logs 
monitored. 

 

2.3.2 Information Sources 

2.3.2.1 SiVi 

The following table shows SiVi’s output format: 

Field Description Example 
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source_IP Source IP 10.0.0.2 

source.Hostname Hostname of the event source. stable 

source.MAC 
Media Access Control (MAC) of the host for the 
event, if known. 

N/A 

source.Port 
External or internal asset source port for the 
event. 

0 

source.LatestUpdate The last time SiVi updated the asset properties. N/A 

source.UsernameDomai
n 

Username and domain associated with the 
asset that generated the event. 

N/A 

source.AssetValue 
Asset value of the asset source if within your 
asset inventory. 

2 

source.Location 
If the host country of origin is known, displays 
the national flag of the event source. 

N/A 

source.Context 
If the asset belongs to a user-defined group of 
entities, SiVi displays the contexts. 

N/A 

source.AssetGroup 
When the host for the event source is an asset 
belonging to one or more of your asset groups, 
this field lists the asset group name or names. 

N/A 

source.Networks 
When the host for the event source is an asset 
belonging to one or more of your networks, this 
field lists the networks. 

Pvt_170 

source.LoggedUsers 

A list of any users who have been active on the 
asset, as detected by the asset scan, for 
example, with the username and user privilege 
(such as admin). 

N/A 

source.OtxIPReputation 
(Yes/No) Whether or not IP Reputation 
identifies the IP address as suspicious. 

No 

source.Services_Service 
List of services or applications detected on the 
source port. 

No services 
available 

source.Services_Port Port used by the service or application. - 

source.Services_Protoco
l 

Protocol used by the service or application. - 

destination.IP Destination IP 10.0.0.5 

destination.Hostname Hostname of the event destination. stable 
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destination.MAC 
Media Access Control (MAC) of the host for the 
event, if known. 

N/A 

destination.Port 
External or internal asset destination port for the 
event. 

0 

destination.LatestUpdate The last time SiVi updated the asset properties. N/A 

destination.UsernameDo
main 

Username and domain associated with the 
asset that generated the event. 

N/A 

destination.AssetValue 
Asset value of the asset destination if within 
your asset inventory. 

2 

destination.Location 
If the host country of origin is known, displays 
the national flag of the event destination. 

N/A 

destination.Context If the asset belongs to a user-defined group of 
entities, SiVi displays the contexts. 

N/A 

destination.AssetGroups When the host for the event destination is an 
asset belonging to one or more of your asset 
groups, this field lists the asset group name or 
names. 

N/A 

destination.Networks When the host for the event destination is an 
asset belonging to one or more of your 
networks, this field lists the networks. 

Pvt_170 

destination.LoggedUsers A list of any users who have been active on the 
asset, as detected by the asset scan, for 
example, with the username and user privilege 
(such as admin). 

N/A 

destination.OtxIpReputati
on 

(Yes/No) Whether or not IP Reputation 
identifies the IP address as suspicious. 

No 

destination.Services_Ser
vice 

List of services or applications detected on the 
destination port. 

No services 
available 

destination.Services_Por
t 

Port used by the service or application. - 

destination.Services_Pro
tocol 

Protocol used by the service or application. - 

event.event_type_id ID assigned by SiVi to identify the event type. 5502 

event.unique_event_id Unique ID number assigned to the event by 
SiVi. 

33b334vs-
sdvs-asdf-
335d-
22daf467 



 

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques   

CyberSANE D3.2 Page 42 of 69 

event.protocol Protocol used for the source/destination of the 
event 

TCP 

event.category Event taxonomy for the event. Authenticatio
n 

event.subcategory Subcategory of the event taxonomy type listed 
under Category.  

Logout 

event.data_source_nam
e 

Name of the external application or device that 
produced the event. 

HIDS-Syslog 

event.data_source_id ID associated with the external application or 
device that produced the event. 

7001 

event.product_type Product type of the event taxonomy, for 
example, Operating System or Server. 

Operating 
System 

event.additional_info Security event additional information N/A 

event.priority Priority ranking based on value of the event 
type. Each event type has a priority value, used 
in risk calculation. 

1 

event.reliability Reliability ranking based on the reliability value 
of the event type.  

Each event type has a reliability value, which is 
used in risk calculation. 

1 

event.risk Risk level of the event: Low = 0, Medium = 1, 
High > 1 

Note: Risk calculation is based on this formula: 

Asset Value * Event Reliability * Event Priority / 
25 = Risk 

If Asset Value = 3, Reliability = 2 and Priority = 
2, the risk would be 3 * 2 * 2 / 25 = 0.48 (rounded 
down to 0) 

4 

event.otx_indicators Number of indicators associated with an IP 
Reputation or OTX pulse event. 

0 

event.device_ip IP address of the sensor that processed the 
event. 

10.0.0.12 

date Date and time of the event (UTC) 2020-04-04 
T17:00:00 

raw_log Raw log details of the event.  
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filename *Optional - Name of file associated with the 
event. 

 

username *Optional - The username associated with the 
event. 

root 

password *Optional - The password associated with the 
event. 

 

userdata1 *Optional - User-created log fields. /var/log/auth.l
og 

userdata2 *Optional - User-created log fields. Log session 
closed. 

userdata3 *Optional - User-created log fields. pam, syslog 

userdata4 *Optional - User-created log fields. None 

userdata5 *Optional - User-created log fields.  

userdata6 *Optional - User-created log fields.  

userdata7 *Optional - User-created log fields.  

userdata8 *Optional - User-created log fields.  

event.event_type_id ID assigned by SiVi to identify the event type. 5502 

event.unique_event_id Unique ID number assigned to the event by 
SiVi. 

33b334vs-
sdvs-asdf-
335d-
22daf467 

event.protocol Protocol used for the source/destination of the 
event 

TCP 

event.category Event taxonomy for the event. Authenticatio
n 

Table 4: Output format of SiVi 

 

2.3.2.2 Encrypted Network Traffic Analysis 

FORTH’s Encrypted Network Analysis Tool produced an output which was extracted with 
the help of Graylog. Provided log was a CSV file which needed some processing. Raw log 
looks like: 
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Figure 19: Raw log of Encrypted Network Analysis Tool 

 

After some handling of the data, the format could be expressed in a more readable way: 

 

 

Figure 20: Raw log formatted 

 

The following table shows an example of the output of Encrypted Network Analysis Tool 
once it has been processed: 

 

Field Example 

timestamp 2020-10-05T14:54:42.000Z 

source SRV110 

event_date 05/10/2020 16:54 

event_id b3eb79bb-071a-11eb-9dcd-ceb1b9f60895 

event_ingested 2020-10-05T14:54:42.000Z 

event_kind BehaviourBlockEvent 

event_module Antivirus 

event_outcome Blocked 

event_severity 2 

event_timezone Europe/Madrid 

file_device _ 

file_path HKLM\SOFTWARE\MCAFEE\SYSTEMCORE\VSCORE\NVP\ 

host_architecture Windows 2003 R2 

host_hostname LUBCS3 

host_ip 172.22.3.3 

host_mac 00505681ce2b 

Message 

<?xml version="1.0" encoding="UTF-8"?> 

<BehaviourBlockEvent><MachineInfo> 

<MachineName>LUBCS3</MachineName><AgentGUID>{df28668e-6205-11ea-0ca1-
00505681ce2b}</AgentGUID> 
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<IPAddress>172.22.3.3</IPAddress><OSName>Windows 2003 
R2</OSName><UserName>NT AUTHORITY\SYSTEM</UserName><TimeZoneBias>-
120</TimeZoneBias> 

<RawMACAddress>00505681ce2b</RawMACAddress> 

<ScannerSoftware ProductName="VirusScan Enterprise" ProductVersion="8.8" 
ProductFamily="TVD"> 

<EngineVersion>0</EngineVersion> 

<DATVersion>0</DATVersion> 

<ScannerType>OAS</ScannerType><TaskName>OAS</TaskName> 

<ProductFamily>TVD</ProductFamily> 

<ProductName>VirusScan Enterprise</ProductName> 

<ProductVersion>8.8</ProductVersion> 

<BlockedBehaviourInfo><EventID>1092</EventID><Severity>2</Severity> 

<GMTTime>2020-10-05T16:54:42</GMTTime> 

<UTCTime>2020-10-05T14:54:42</UTCTime> 

<RuleName>ProtecciÃ³n comÃºn estÃ¡ndar:Impedir la modificaciÃ³n de los archivos y las 
opciones de McAfee</RuleName> 

<ProcessName>C:\ARCHIVOS DE 
PROGRAMA\MCAFEE\AGENT\MACOMPATSVC.EXE</ProcessName> 

<FileName>HKLM\SOFTWARE\MCAFEE\SYSTEMCORE\VSCORE\NVP\</FileName> 

<Source>_</Source> 

<ActionsBlocked>5</ActionsBlocked> 

<szActionsBlocked>Escritura</szActionsBlocked> 

</BlockedBehaviourInfo></ScannerSoftware></BehaviourBlockEvent>#015 

Observer_product VirusScan Enterprise 

Observer_type Antivirus 

Observer_vendor TVD 

Organization_id TEST 

Organization_name TEST 

User_name NT AUTHORITY\SYSTEM 

Table 5: Encrypted Network Analysis Tool output format 

 

2.3.2.3 GLORIA 

The following table sums up the proposed output format of GLORIA: 

ECS field Description 

@timestamp Date of detection in origin 

agent_name Custom name of agent 
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agent_type Type of agent 

destination_geo_city_name Destination city name 

destination_geo_country_iso_code Destination country code 

destination_geo_country_name Destination country name 

destination_ip Destination IP for the connection 

destination_port Port of the destination 

event_action Action captured by the event 

event_category One of four ECS Categorization fields 

event_ingested Date when event was received 

event_dataset Name of the dataset 

event_end Date when event ended or activity was last observed 

event_kind 
High-level information of what type of data the event 
contains 

event_module Name of the module data is coming from 

event_original Original message description 

event_outcome 
Success or failure from the perspective of the entity that 
produced the event 

event_severity Numeric severity of the event according to event source 

event_start 
Date when the event started or when the activity was first 
observed 

event_timezone 
Time zone of the event (if not included in the timestamp) 
of device source of the alert 

file_device Device where file is located 

file_hash_md5 MD5 hash of file 

file_hash_sha256 SHA256 hash of file 

file_name Name of the file (including extension) without the directory 

file_path Path of the file 

file_size Size of the file (bytes) 
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host_geo_city_name City name (of host) 

host_geo_country_iso_code Code of the country where host is located 

host_geo_country_name Country name 

host_group_name Group to which host belongs 

host_hostname Hostname of the host where alert is produced 

host_ip IP address of host where alert is produced 

http_request_body_content Full HTTP request body 

message Raw text message of entire event 

network_transport A name given to an application level protocol 

observer_ip IP address of the device that produces the alert 

observer_name Name of device which produces the alert 

observer_product Product model which generates the alert 

observer_type Kind of device which produces the alert 

observer_vendor Vendor of the device which produces the alert 

organization_id Unique ID for the organization client 

organization_name Organization name 

process_args Parameters received by a process being executed 

process_executable Name of executable 

process_hash_md5 MD5 hash of executable file 

process_hash_sha256 SHA256 of executable file 

server_domain FQDN name of server 

source_geo_city_name Name of city of origin 

source_geo_country_iso_code Code of country source of connection 

source_geo_country_name Name of country source of connection 

source_hostname Name of source of connection 

source_ip IP address of the source of the connection (IPv4 or IPv6) 
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source_port Port of source of connection 

threat_framework 
Name of threat framework used to classify or categorize 
the threat 

rule_id ID or code established by signature manufacturer 

rule_name Signature established by manufacturer 

url_full URL of HTTP request 

user_domain Windows domain of the user 

user_group_name Name of the group to which the user belongs 

user_name Short name or login of the user 

Table 6: Output format of GLORIA 

 

2.3.2.4 XL-SIEM 

 

The SIEM of ATOS produces the following output: 

Field Description 

Backlog_ID Backlog Identificator 

Category Category of the event 

Date Date when event was produced or detected 

Device Device affected by the event 

DST_IP Destination IP 

DST_IP_Hostname Destination IP hostname 

DST_Port Puerto de destino 

Event_ID Event identification 

Filename Name of file related to the incident 

Interface Interface through which the event was detected 

Log Raw log of event 

Organization Name of organization engaged in detecting the event 

Password  
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Plugin_ID Identification of the plugin which detected the event 

Plugin_name Name of the plugin that detected the event 

Priority Numeric priority of the event 

Protocol Protocol related to the event 

Related_events List of related events (if applicable) 

Reliability Numeric estimate of reliability of event detection 

Risk Numeric estimate of risk associated to event 

SRC_IP Source IP address 

SRC_IP_Hostname Source IP hostname 

SRC_Port Source port 

Subcategory Description of subcategory of event 

Userdata1 *Optional 

Userdata2 *Optional 

Userdata3 *Optional 

Userdata4 *Optional 

Userdata5 *Optional 

Userdata6 *Optional 

Userdata7 *Optional 

Userdata8 *Optional 

Userdata9 *Optional 

Table 7 - Output format of XL-SIEM 

 

The format itself presents different event security information fields which must be filtered 
and normalized before mapping. First process is to translate the output to a more readable 
format: 

 

 

Figure 21: Separate fields in output of XL-SIEM 
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It will be necessary to transpose fields to filter and know what could be discarded: 

 

 

Figure 22: Final transformation of output of XL-SIEM 

 

Once these steps have been completed, log is ready for the mapping procedure. 

 

2.4 Overview of Architecture 
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2.4.1 Introduction 

CyberSANE project makes use of several tools from very different manufacturers. Each one 
has its own set of characteristics and has been designed to accomplish a concrete mission 
with regard to event information gathering. Because of that, when comparing devices 
involved on monitoring tasks, information obtained may vary significantly from one device to 
another. 

 

After careful considerations, it was decided that the best approach to follow would be to 
normalize all incoming logs to a recognizable, standard output. This normalized output can 
then be handled with less effort, due to the fact that it has been previously filtered and 
adapted. For that purpose, it is important to first define the necessary architecture, that is, 
how inputs are going to be integrated in the CyberSANE platform. 

 

 

2.4.2 Elastic Common Schema as standard output 

No matter what kind of operation we may be performing (cyber threat intelligence, operation 
analytics, etc.) it is quite common to gather data from different sources and devices. 

 

Elastic Common Schema or ECS30 is an open source specification and framework which 
defines a common set of fields to store event data. This common data model implies a big 
advantage when trying to correlate data. Although one of its main objectives is to be 
integrated with ElasticSearch, its versatility as a highly customizable set of fields makes it 
quite suitable to be employed for other purposes. Therefore, ECS can be adapted to map 
any security event or log, no matter what source has produced it. ECS proposes different 
groups of fields called “field sets”. These categories can be used at will. Field sets are 
available online31. 

 

With the advantage of being open source, this framework for data modelling can be used 
for free. While some people might expect it to be installed and running as a standalone 
component, the idea behind the project is more about being a guideline to achieve data 
normalization from different sources. ECS proposes a framework flexible to accept whatever 
input might be necessary. An important nuance is that ECS makes no modification on the 
original data. Another strength of ECS is about its integration with ElasticSearch, which 
comes naturally. Therefore, it is possible to retrieve information, engage with dashboards 
and queries or drop to a more granular view in a few clicks. Correlation of data and 
collaboration between partners require little effort thanks to ECS, given its powerful 
capabilities when adapting to different kinds of inputs produced by vendors or devices. 

 

Last but not least, ECS can take advantage of machine learning. It is possible to create jobs 
just by means of the Elastic Stack and store results into ElasticSearch. Handling operations 
such as filtering, sorting or correlating anomalies are no longer painful because of the way 
ECS links security event information. 

 
30 https://www.elastic.co/guide/en/ecs/current/index.html 
31 https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html 

https://www.elastic.co/guide/en/ecs/current/index.html
https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html
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2.4.3 Normalization and transformation of event information into unified 
format 

Normalization and transformation operations are performed with one clear purpose: 
homogenise data. When working with different sources, vendors or providers, information 
can adopt different ways and come into distinct formats. However, the best way to make the 
most of it is by means of putting all the pieces together. Normalization can assist in this 
process, enabling to care for just one standard format. Simplification is key for a fast answer 
when dealing with a security event. 

 

According to what Elastic indicates, a good way to fit into ECS format should include the 
following steps: 

1. Review of fields in the original source. The idea would be to understand what 
information is provided in each log. 

2. Filter and discard what is not necessary. 
3. Define a final ECS output version to which all inputs should reasonably map. 
4. Map events to the relevant ECS Core or Extended field. 
5. Review all remaining information with the objective of trying to populate as many 

ECS fields as possible. Different field sets can help with this task. 
6. Refinement. 

 

2.4.3.1 Filter (Reducing irrelevant information) 

First thing to do before normalizing or transforming data is to filter it. Usually, logs provide a 
lot of information but not everything is needed. Therefore, it is always advisable to get rid of 
data to spare. Filtering has a double-side beneficious effect: 

1. It reduces complexity by avoiding non necessary information to be processed. 
2. It helps saving time as there is no need to process every single piece of 

information provided by the logs. 

 

Additionally, filtering makes subsequent stages more manageable: by means of reducing 
the amount of information to be processed it is quite possible to be focused on what matters. 

 

With regard to CyberSANE, first step is to understand what information is provided by each 
one of the inputs. It was performed a review of fields from each one of the original sources, 
to grasp what might come in the log. This entails a big importance, since every device 
acquiring data will gather different kind of fields. Once this is completed, filtering can be 
performed: 

• Input provided by GLORIA is quite similar to the standard ECS output format. 
GLORIA already proposes an ECS format style to store data. Only thing which 
remained to be done was to check what fields were being used to verify there was 
no important information missing. 

• Input of SiVi provides various fields which need some mapping. For instance, 
information such as reliability or asset groups was not easily mapped with the ECS 
format. But, more importantly, some optional fields such as password (associated 
with the event) or userdata field can be discarded without hesitation. 
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• FORTH’s Encrypted Network Traffic Analysis Tool provided a more straightforward 
log. In this case the point was not about filtering but making sure there was enough 
information. Log of device lacks some information about destination, but it comes 
fully provisioned as far as event fields are concerned. 

• With regard to XL-SIEM of ATOS, it provides data about several of the most 
important event fields such as host hostname, interface, device, sensor, source IP 
and port or username. However, it is difficult to map some of the ECS event fields to 
the log provided. 

 

2.4.3.2 Output format proposal 

One of the biggest advantages of ECS is the enormous possibility of customization it 
provides. Therefore, output format can be designed to fulfil any specific need. After 
understanding what information does every one of the partners provide, it has been easier 
to know the most important fields to be considered for the output. Minimum output proposal 
should include the following information: 

• Time when the event took place. A timestamp would be enough, better if it includes 
timezone. 

• Information about both source and destination of the attack: IP address, hostname, 
MAC address (if available) 

• Identification of the event. 

• Severity of the event. 

• Information about what device processed the event or produced the alert. 

• Result of the alert (block, false positive, etc.) 

• Name of the user associated with the event (if any). 

• Any other information of interest such as rule that was triggered, protocol or 
organization name. 

All this information is compiled in the following proposed ECS fields: 

Field Description 

@Timestamp Date of detection in origin 

destination.ip Destination IP for the connection 

destination.port Port of the destination 

event.action Action captured by the event 

event.category Taxonomy of the event 

event.end Date when the event ended or when the activity was last observed 

event.id Unique ID to describe the event 

event.outcome Success or a failure from the perspective of the entity that produced the 
event 

event.severity The numeric severity of the event according to your event source 

event.timezone Event's time zone (if not included in the timestamp) of device source of 
alert 

event.type Represents a categorization "sub-bucket", i.e., subcategory of event 
taxonomy 
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file.name Name of the file associated with the event including the extension, 
without the directory 

file.path Path of the file 

host.hostname Hostname of the host (where alert is produced) 

host.ip Host IP address (IP of host where alert is produced) 

host.mac Host mac addresses 

message Raw text message of entire event (raw of log) 

network.transport A name given to an application level protocol (Protocol used for 
source/destination) 

observer.ip IP address of device which produces alert 

observer.name Name of device which produces alert 

observer.type Kind of device which produces the alert 

organization.id Unique identifier for the organization (client) 

rule.name Signature established by manufacturer / Rule used to detect the event 

source.hostname Name of source of connection 

source.ip IP address of the source (of the connection) (IPv4 or IPv6) 

source.mac MAC address of the source (of the connection) 

source.port Port of the source 

user.domain (Windows) domain of the user 

user.name Short name or login of the user 

Table 8: Output format proposal 

 

2.4.3.3 Map and transform (Change the formats) 

Mapping is the process of making an input fit into an output. This process has different levels 
of complexity depending on how far input and output are. The more similar they are, the less 
work is to be done. However, when input organization differs from output’s one, some 
operations are needed, and these may entail some complexity. 

 

According to what was stated in the filtering stage, output of GLORIA poses the least 
difficulty to be mapped, given that the format is the same to the proposed output format 
(ECS in both cases). For the other logs, some transformation is needed to adapt what comes 
to output proposed format. 

 

Mapping is a process done on two sides: 

i. Manual: the analyst designs how an input field should match to the corresponding 
output one, that is, what is the best output matching for every input. This step 
should be improved with several iterations to populate as many output fields in 
the most accurate way as possible. Each iteration should deliver more fields 
populated. 
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ii. Automatic: it would be necessary to define some pipelines to perform the 
transformation in an automatized way. The main problem will be that any input 
will need its own, custom pipeline to be transformed into a suitable output. 

 

2.4.3.4 Review and refinement 

The last step of the normalization process would be a review and refinement of the mapping. 
The purpose is that the analyst verifies whether there are some input fields that are not 
matching properly so he can make the proper adjustments. Sometimes two input fields could 
be matched with a particular output field. The objective of refinement is to review these 
situations and try to resolve them to achieve the most accurate result possible. Refinement 
seeks to reduce mapping errors as well as any doubtful situation it may arise. 

 

It is important to bear in mind that in most of the situations, the process of mapping will not 
be 100% accurate, this should happen only if the same format is used in both origin and 
destination and, then, mapping would not be necessary. Only through time, dedication and 
expertise the analyst will be capable of matching source log to destination accurately. 

 

2.4.4 Architecture proposal 

The purpose of the system will essentially be to transform various inputs into a standard 
output. There are several ways to achieve this objective. In this case, architecture of the 
system proposed was thought to be as simple as possible while capable of meeting the 
requirements. It will be necessary to have, at least, some components: 

1. First component should contain various plugins. Plugins are the best way to read the 
input and accept different kinds of logs. Its main function is just to accommodate to 
whatever is provided. It is essential that the component is scalable, that is, accept 
new plugins if needed. The idea is to make the architecture to easily accept new log 
formats in case these are provided. 

2. Transformation and normalization component. Normally, pipelines are the 
mechanism in charge of providing a standard output. They work similar to funnels 
and make use of some normalization techniques to adapt what comes from the tools 
to the proposed standard output format: 

a. Filtering input, i.e., discarding what may not be necessary. 
b. Mapping, that is, matching input fields to the correspondent field in ECS 

format. 

 

It would be desirable that all components are integrated in a single module. Although each 
component is responsible for its own duties, having a single module may help to simplify, 
especially in terms of avoiding unnecessary communications between modules. 

 

As previously stated, output format will be ECS. Thus, it must not be forgotten that it would 
be possible to bring information to ElasticSearch if needed. 

 

2.4.5 Sequence diagram 
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Sequence diagram groups in a visual manner the way the architecture should behave. 
Figure 24 shows the sequence diagram: 

 

 

Figure 23 - Sequence diagram 

 

The most important things about sequence diagram are summed up in the following points: 

• Plugin components are expected to accept raw logs from different devices. Plugins 
are designed to deal with different manufacturers and inputs. Architecture can be 
escalated just by adding whatever plugins may be necessary. 

• Pipelines do the hard work of filtering logs, discarding whatever may be unnecessary 
and, finally, mapping to the selected ECS output format. Once the data has been 
given appropriate treatment, it is sent to the CyberSANE platform. 

• CyberSANE will have all information standardized to ECS format. This will make 
easier to handle the data and provide new possibilities, such as providing information 
to ElasticSearch. ElasticSearch is one of the best ways to display complex 
information just with little effort. 

 

2.4.6 Normalization and data transformation incident-related examples 

2.4.6.1 Example 1 – Mapping GLORIA to ECS 

In this example mapping between output of GLORIA to ECS format is going to be explained 
in detail. The advantage here is that GLORIA already provides a log in ECS. 

 

An example of the output provided by GLORIA would be the following raw log: 

@timestamp timestamp=1580908637.837166 

destination_ip dst=208.67.222.222:XX 

destination_port dst=x.x.x.x:53 

event_dataset security_event 

event_module IPS 
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event_severity priority=3 

host_hostname shost=0C:8D:DB:65:98:85 

message 

1580908637.931867289 IN_Dubai_MX84 security_event ids_alerted 
signature=1:28039:7 priority=3 timestamp=1580908637.837166 
shost=0C:8D:DB:65:98:85 direction=egress protocol=udp/ip 
src=10.233.92.4:47303 dst=208.67.222.222:53 message: 
INDICATOR-COMPROMISE Suspicious .pw dns query 

network_transport protocol=udp/ip 

observer_name IN_Dubai_MX84  

observer_product Threat Protection 

observer_type Meraki 

observer_vendor Cisco 

organization_name Innovasjon Norge 

source_ip src=10.233.92.4:XXXX 

source_port src=X.X.X.X:47303 

rule_id signature=1:28039:7 

rule_name message: INDICATOR-COMPROMISE Suspicious .pw dns query 

Table 9: Example of output of GLORIA 

 

As the table shows, some of the ECS outputs are populated with security event information. 
For the time being, it is possible to know: 

• Time and data when the event took place. 

• Severity of the event. 

• Source IP and port. 

• Destination IP and port. 

• MAC address of the host affected. 

• Details of the product raising the alert. 

• ID and name of the rule raised by the event. 

 

Besides, GLORIA provides raw log of the event (see message field in the table). Once the 
input is in ECS format, it is easy to map with the expected output: 
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Figure 24: Example of mapping of output 

 

2.4.6.2 Example 2 – Mapping SiVi to ECS 

In this example the transformation of the output format of SiVi into the ECS will be presented 
in details. A log of SiVi has the following format: 

Proposed Fields SiVi Fields SiVi Field Example 

@Timestamp date 2020-04-04 T17:00:00 

destination.ip destination.IP 10.0.0.5 

destination.port destination.Port 5000 

event.action - - 

event.category event.category Authentication 

event.end - - 

event.id event.unique_event_id 33b334vs-sdvs-asdf-335d-22daf467 

event.outcome - - 

event.severity event.risk 4 

event.timezone - - 

event.type event.subcategory Logout 

file.name filename  

file.path - - 

host.hostname source.Hostname stable 

host.ip event.device_ip 10.0.0.2 

host.mac source.MAC 00:1B:33:11:3B:A4 

message raw_log  

network.transport event.protocol TCP 

observer.ip event.device_ip 10.0.0.12 

observer.name event.data_source_name HIDS-Syslog 

Matching

@timestamp timestamp=1580908637.837166 @Timestamp Date of detection in origin timestamp=1580908637.837166

destination.ip dst=208.67.222.222:XX destination.ip Destination IP for the connection dst=208.67.222.222:XX

destination.port dst=x.x.x.x:53 destination.port Port of the destination dst=x.x.x.x:53

event.dataset security_event event.action Action captured by the event #N/A

event.module IPS event.category Taxonomy of the event #N/A

event.severity priority=3 event.end Date when the event ended or when the activity was last observed #N/A

host.hostname  shost=0C:8D:DB:65:98:85 event.id Unique ID to describe the event #N/A

message 1580908637.931867289 IN_Dubai_MX84 security_event ids_alerted signature=1:28039:7 priority=3 timestamp=1580908637.837166 shost=0C:8D:DB:65:98:85 direction=egress protocol=udp/ip src=10.233.92.4:47303 dst=208.67.222.222:53 message: INDICATOR-COMPROMISE Suspicious .pw dns queryevent.outcome Success or a failure from the perspective of the entity that produced the event #N/A

network.transport protocol=udp/ip event.severity The numeric severity of the event according to your event source priority=3

observer.name IN_Dubai_MX84 event.timezone Event's timezone (if not included in the timestamp) of device source of alert #N/A

observer.product Threat Protection event.type Represents a categorization "sub-bucket", i.e., subcategory of event taxonomy (SiVi) #N/A

observer.type Meraki file.name Name of the file associated with the event including the extension, without the directory #N/A

observer.vendor Cisco file.path Path of the file #N/A

organization.name Innovasjon Norge host.hostname Hostname of the host (where alert is produced)  shost=0C:8D:DB:65:98:85

source.ip src=10.233.92.4:XXXX host.ip Host IP address (IP of host where alert is produced) #N/A

source.port src=X.X.X.X:47303 host.mac Host MAC addresses #N/A

rule.id signature=1:28039:7 message Raw text message of entire event (raw of log) 1580908637.931867289 IN_Dubai_MX84 security_event ids_alerted signature=1:28039:7 priority=3 timestamp=1580908637.837166 shost=0C:8D:DB:65:98:85 direction=egress protocol=udp/ip src=10.233.92.4:47303 dst=208.67.222.222:53 message: INDICATOR-COMPROMISE Suspicious .pw dns query

rule.name message: INDICATOR-COMPROMISE Suspicious .pw dns query network.transport A name given to an application level protocol (Protocol used for source/destination) protocol=udp/ip

observer.ip IP address of device which produces alert #N/A

observer.name Name of device which produces alert IN_Dubai_MX84 

observer.type Kind of device which produces the alert Meraki

organization.id Unique identifier for the organization (client) #N/A

rule.name Signature established by manufacturer / Rule used to detect the event (SiVi) message: INDICATOR-COMPROMISE Suspicious .pw dns query

source.hostname Name of source of connection #N/A

source.ip IP address of the source (of the connection) (IPv4 or IPv6) src=10.233.92.4:XXXX

source.mac MAC address of the source (of the connection) #N/A

source.port Port of the source src=X.X.X.X:47303

user.domain (Windows) domain of the user #N/A

user.name Short name or login of the user #N/A

Expected outputInput
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observer.type - - 

organization.id - - 

rule.name - - 

source.hostname source.Hostname stable 

source.ip source.IP 10.0.0.2 

source.mac source.MAC 00:1B:33:11:3B:A4 

source.port source.Port 4999 

user.domain - - 

user.name username root 
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Chapter 3 Summary and Conclusion 

3.1 Intrusion detection in encrypted network traffic 

With the advent and rapid adoption of network encryption mechanisms, typical deep packet 
inspection systems that monitor network packet payload contents are becoming less 
effective. Advancing intrusion detection tools to be also effective in encrypted networks is 
crucial. In the context of Task 3.3, FORTH examines the state-of-the-art in encrypted traffic 
analysis and proposes a methodology to automatically mine signatures for intrusion 
detection in encrypted networks. More specifically, FORTH: 

• Reviews the state-of-the-art in the domain of encrypted traffic analysis for intrusion 
detection. 

• Generates a ground-truth dataset with network traces that contain malicious 
activity. 

• Processes the collected network traces and infers the most prevalent features 
contained in network packet headers. 

• Analyses the exported data. 

• Employs an algorithm for discovering sequential sequences of packet metadata 
inside a network flow. 

• Concludes on a representation format and proposes a simple and mineable 
signature language.  

• Extends the implementation of a deep packet inspection engine to support 
signatures for encrypted traffic. 

 

3.2 Advantages of data normalization 

As it has been described in this document, working with various sources can be quite 
challenging. So, when dealing with different kinds of inputs and formats, normalization 
becomes a necessity. The fact that solutions from several manufacturers are involved in the 
CyberSANE solution provides data which has to be standardized if is going to be exploited. 
Data normalization has helped through the process of standardization in several ways: 

✓ Detaching what is necessary from what is dispensable, that is, reducing the amount 
of data to be processed and, therefore, time required. 

✓ Funnelling data to the output. 
✓ Producing an expected, structured output. 
✓ Avoiding confusion and disruption with regard to data treatment. 

 

However, sometimes normalization process is neither easy nor straightforward. Its 
complexity can be quite changeable because it is based on how the input arrives. Analysts 
need to devote some time on adjusting the way conversion must be done, typically by means 
on relying on the proper pipelines to do the hard work. 
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3.3 Architecture and ECS 

A proper, conceived architecture should be the backbone of any project, and data 
normalization is no different in this point. It is essential to think carefully and design a solid 
architecture to make the most of data normalization. 

As per the proposed architecture, the objectives had a double-side perspective: 

1. Fulfil requirements of incident information normalization for every one of the sources 
involved in the process of data gathering. 

2. Keep architecture as simple as possible and try to avoid unnecessary complexity. 

 

When designing the architecture, these two goals have been kept in mind permanently. As 
per the results obtained, the objectives have been achieved. 

With regard to Elastic Common Schema, choosing ECS as the standard output format was 
easy: a free framework for data modelling which is flexible, powerful enough and 
customizable. ECS provides versatility to keep things simple but, at the same time, fits with 
different input formats while allowing an easy mapping. It is always advisable to turn to free 
components which are, frequently, quite configurable and useful and provide no fewer 
functionality compared to the privative ones. 
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Chapter 4 List of Abbreviations  

Abbreviation Translation 

Adversary TTP Adversary Tactics, Techniques and Procedures 

APT Advanced Persistent Threat 

ASIC Application-Specific Integrated Circuit 

CEF Common Event Format 

CSIRT Computer Security Incident Response Team 

DDoS Distributed Denial of Service 

ECS Elastic Common Schema 

FPGA Field-Programmable Gate Array 

IDS Intrusion Detection System 

IODEF Incident Object Description Exchange Format 

IRT Incident Response Team 

OSSEC Open Source HIDS SECurity 

SDN Software Defined Network 

SIEM Security Information and Event Management 

STIX Structured Threat Information eXpression 
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TCAM Ternary Content Addressable Memory 
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