

D3.2

 Encrypted Network Traffic Analysis,
Transformation and Normalization Techniques

Project number: 833683

Project acronym: CyberSANE

Project title:

Cyber Security Incident Handling, Warning

and Response System for the European

Critical Infrastructures

Start date of the project: 1st September, 2019

Duration: 36 months

Programme: H2020-SU-ICT-2018

Deliverable type: Report

Deliverable reference

number:
D3.2

Work package contributing

to the deliverable:
WP3

Due date: 31 12 2020 – M16

Actual submission date: 31/01/2021, 03/08/2021

Responsible

organisation:
ATOS

Editor: José Francisco Ruiz

Dissemination level: CO

Revision: 2

Abstract:

The present document covers an

analysis of the encryption traffic as well

as a study of some of the most common

transformation and normalization

techniques employed nowadays

Keywords:

Encrypted traffic, signatures, data

normalization, data transformation,

Elastic Common Schema

The project CyberSANE has received funding

from the European Union’s Horizon 2020 research
and innovation programme under grant agreement

No 833683.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 1

Editor

Jose Francisco Ruiz (ATOS)

Contributors (ordered according to beneficiary numbers)

Sergio Zamarripa López (S2)

Spyros PAPASTERGIOU, NicolaTAMBURINI, Andrea PRUCCOLI (MAG)

Eva Papadogiannaki, Manos Athanatos (FORTH)

Konstantinos Kontakis, Sofia Spanoudaki, Georgia Koutsouri, Marianna Manou Kaklamani
(STS)

Saoulidis Harris (SID)

Revision History

Rev. Date Authors Comment

1.2.1 03/12/20

José F. Ruiz, José Javier
de Vicente (ATOS)

Sergio Zamarripa López
(S2)

Eva Papadogiannaki,
Manos Athanatos
(FORTH)

Konstantinos Kontakis,
Sofia Spanoudaki,
Georgia Koutsouri,
Marianna Manou
Kaklamani (STS)

Saoulidis Harris (SID)

Final version to be submitted

2 03/08/21

José Javier de Vicente
(ATOS),

Eva Papadogiannaki
(FORTH)

References have been reviewed: now the text has a direct
link to the citation. This applies specially to pages 15,16
but also to pages 8, 9 (Section 1.1 and Section 1.2), page
10 (Section 1.2), page 13 (Section 1.3), pages 18, 19
(Sections 1.4.2 and 1.5), pages 22 and 23 (Section 1.5),
pages 25 and 26 (Section 1.6).

Section 1.3 has been updated to provide more details
about the training of the datataset, more specifically,
changes were made to section 1.3.2 to provide details on
how the signatures have been generated (Pages 13 and
14) and updated references (Page 13). References of this
section have also been reviewed (Pages 11 and 13).

Section 1.4.3 has been enhanced and updated to clarify
how the dataset is evaluated (Pages 17 and 18).

Added section 1.6.3 Future work (Page 26).

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 2

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s
view – the European Commission is not responsible for any use that may be made of the information
it contains. The users use the information at their sole risk and liability.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 3

Executive Summary

Nowadays cybersecurity entails big importance in every aspect of our digital lives. Attacks
are becoming increasingly sophisticated while the cost of keeping assets safe is raising
since new, improved protection measures are required.

One way to deal with cyber threats is by utilizing encryption mechanisms. Encryption is
widely used today to maintain information safe from unauthorized access but also protects
data while in transit. In this document several encryption mechanisms are going to be
described; thus, revealing the most relevant applications of encryption as far as network
traffic is involved.

Apart from that, the document deepens into security incidents data transformation and
normalization techniques. Currently, cybersecurity analysts rely on different solutions and
tools provided by heterogeneous vendors with reference to security logging, monitoring and
detection. The presence of distinct solutions in the field of cybersecurity makes the data
correlation a necessity in order to make the most of it. However, proper correlation can only
be achieved through the normalization of collected data. In other words, log transformation
and normalization become essential when dealing with different log manufacturers.
Otherwise, cybersecurity analyst won’t be able to link information from various sources.
Normalization is the way to make counter intelligence sharper, more intelligent and effective
so, its importance cannot be praised enough in terms of saving both time and money.

The document describes several security incidents data transformation and normalization
techniques. In addition, it shows how different solutions gather information, what data is
collected in each case and presents an example of how data is normalized to the proposed
output format.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 4

Contents

Revision History 1

Executive Summary 3

Contents 4

List of Figures 6

List of Tables 7

Chapter 1 Encrypted Network Traffic Analysis 8

1.1 Introduction 8

1.2 State-of-the-Art in Encrypted Traffic Analysis for Network Security 9

1.3 Encrypted Traffic Signatures 10

1.3.1 Signature Design and Representation 11

1.3.2 Signature Generation Methodology 12

1.4 Signature Evaluation 14

1.4.1 Traffic Processing 14

1.4.2 Ground-truth Dataset Collection 15

1.4.2.1 CyberSANE pilots ... 16

1.4.3 Signature Effectiveness 17

1.5 Intrusion Detection Engine Implementation 18

1.5.1 Efficient Automaton 18

1.5.2 Pattern Matching Engine 20

1.5.3 Performance Micro-benchmarks 23

1.6 Discussion 24

1.6.1 Traffic Analysis Resistance 24

1.6.2 TLS 1.3 25

1.6.3 Future work 25

Chapter 2 Transformation and Normalization Techniques 27

2.1 Introduction 27

2.2 State-of-the-art: transformation and normalization techniques 27

2.2.1 CEF 27

2.2.2 STIX 28

2.2.3 IODEF 30

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 5

2.2.4 Other options to normalize data 31

2.3 Overview of Security Monitoring Devices 32

2.3.1 Devices 32

2.3.1.1 SiVi (SID) .. 32

2.3.1.2 Encrypted Network Traffic Analysis (FORTH) ... 34

2.3.1.3 GLORIA (S2) .. 35

2.3.1.4 ATOS XL-SIEM ... 36

2.3.1.4.1 XL-SIEM 36

2.3.1.4.2 L-ADS 38

2.3.2 Information Sources 39

2.3.2.1 SiVi ... 39

2.3.2.2 Encrypted Network Traffic Analysis ... 43

2.3.2.3 GLORIA .. 45

2.3.2.4 XL-SIEM ... 48

2.4 Overview of Architecture 50

2.4.1 Introduction 51

2.4.2 Elastic Common Schema as standard output 51

2.4.3 Normalization and transformation of event information into unified format 52

2.4.3.1 Filter (Reducing irrelevant information) ... 52

2.4.3.2 Output format proposal ... 53

2.4.3.3 Map and transform (Change the formats) ... 54

2.4.3.4 Review and refinement ... 55

2.4.4 Architecture proposal 55

2.4.5 Sequence diagram 55

2.4.6 Normalization and data transformation incident-related examples 56

2.4.6.1 Example 1 – Mapping GLORIA to ECS ... 56

2.4.6.2 Example 2 – Mapping SiVi to ECS .. 58

Chapter 3 Summary and Conclusion 61

3.1 Intrusion detection in encrypted network traffic 61

3.2 Advantages of data normalization 61

3.3 Architecture and ECS 62

Chapter 4 List of Abbreviations 64

Chapter 5 Bibliography 67

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 6

List of Figures

Figure 1 Illustration of (selected) packet payload size sequences within a traffic capture of a
SSH password cracking attempt using the “hydra” tool. ... 12

Figure 2 Illustration of our methodology workflow. .. 13

Figure 3: Illustration of our testbed setup for traffic collection. .. 15

Figure 4: Automaton size. .. 20

Figure 5: Automaton compilation time. ... 20

Figure 6: An illustration of the packet processing scheme in a hardware setup that contains
one main processor packed in the same die with an integrated GPU and one discrete
high-end GPU. ... 21

Figure 7: Overview of the packet processing architecture. ... 22

Figure 8: Latency of the pattern matching engine using the discrete GPU 23

Figure 9: Latency of the pattern matching engine using the integrated GPU. 24

Figure 10: Latency of the pattern matching engine using the CPU. 24

Figure 11: How STIX can relate cyber threat information (MITRE) 29

Figure 12: SiVi Security monitoring and analysis mechanism .. 33

Figure 13: SiVi anomaly detection mechanism ... 33

Figure 14: Output of the Intrusion Detection Engine ... 35

Figure 15: Event processing model (GLORIA) ... 36

Figure 16: Data flow for XL-SIEM ... 37

Figure 17: XL-SIEM Architecture .. 37

Figure 18: L-ADS architecture .. 39

Figure 19: Raw log of Encrypted Network Analysis Tool .. 44

Figure 20: Raw log formatted ... 44

Figure 21: Separate fields in output of XL-SIEM .. 49

Figure 22: Final transformation of output of XL-SIEM ... 50

Figure 23 - Sequence diagram ... 56

Figure 24: Example of mapping of output ... 58

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 7

List of Tables

Table 1: Signature examples of intrusion attempts ... 11

Table 2: Intrusion attempts to the vulnerable web server. .. 16

Table 3: True Positive Rates and False Discovery Rates of the automated signature mining
methodology. The percentages presented are extracted through the comparison of the
results of our methodology to the ground-truth dataset. .. 17

Table 4: Output format of SiVi .. 43

Table 5: Encrypted Network Analysis Tool output format ... 45

Table 6: Output format of GLORIA ... 48

Table 7 - Output format of XL-SIEM ... 49

Table 8: Output format proposal ... 54

Table 9: Example of output of GLORIA .. 57

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 8 of 69

Chapter 1 Encrypted Network Traffic Analysis

1.1 Introduction

The adoption of network encryption is rapidly growing. The 2019 Annual Report of Let’s
Encrypt1 states that in just four years, global HTTPS page loads have increased from 39%
to more than 80%2. In 2019, one year after TLS 1.3 been published as an RFC3, IETF reports
that its adoption is rapidly growing with a 30% of Chrome’s Internet connections to negotiate
TLS 1.34. Even though network encryption is crucial for the protection of users and their
privacy, it naturally introduces challenges for tools and mechanisms that perform deep
packet inspection and rely heavily on the processing of packet payloads. Common
applications of deep packet inspection are packet forwarding (Rizzo, Carbone and Catalli)
and l7 filtering5, while it is a vital operation in firewalls, intrusion detection and prevention
systems678. Typical intrusion detection systems, such as Snort, inspect packet headers and
payloads to report malicious or abnormal traffic behaviour. In encrypted packets9 though,
the only information that makes sense is (i) TLS handshake packets and (ii) TCP/IP packet
headers, since the data transmitted in packet payloads is encrypted. So, even popular
intrusion detection systems seem to inadequately inspect encrypted connections. The SSL
Readme page of Snort, for instance, reports that when inspecting port 443, “only the SSL
handshake of each connection will be inspected”10.

To overcome the challenges that network encryption introduces in the domain of network
security, many works employ alternative techniques to identify the nature of the traffic. For
example, Broadcom’s Encrypted Traffic Management solution intercepts encrypted traffic to
gain and offer visibility1112. At another end, CISCO’s Encrypted Traffic Analytics solution
performs network analytics and machine learning to gain insight into threats in encrypted
traffic without requiring decryption13. In fact, recently, machine learning techniques are
widely used for traffic classification, network analytics and malware detection (Anderson and
McGrew) (Lotfollahi, Siavoshani and Zade) (Rosner, Kadron and Bang). Others focus on the
implementation of real-time traffic identification systems for encrypted networks
(Papadogiannaki, Halevidis and Akritidis). The majority of these works show that despite
having encrypted payloads in network packets, we are still able to classify network traffic
even in a fine-grained manner (M. Conti, L. V. Mancini and R. Spolaor) (Papadogiannaki,
Halevidis and Akritidis). Packet headers contain information like IP addresses, port numbers
and packet data sizes. Time-related features, such as flow duration and packet inter-arrival
times, are also relevant in encrypted traffic analysis and can be easily computed. When

1 https://letsencrypt.org
2 https://www.abetterinternet.org/documents/2019-ISRG-Annual-Report-Desktop.pdf
3 https://tools.ietf.org/html/rfc8446
4 https://www.ietf.org/blog/tls13-adoption/
5 http://l7-filter.sourceforge.net
6 https://suricata-ids.org
7 https://www.snort.org
8 https://zeek.org
9 With encrypted packets, we refer to TCP packets that are secured using the TLS protocol.
10 https://www.snort.org/faq/readme-ssl
11 https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management
12 https://docs.broadcom.com/doc/the-importance-of-broad-cipher-suite-support
13 https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html

https://letsencrypt.org/
https://www.abetterinternet.org/documents/2019-ISRG-Annual-Report-Desktop.pdf
https://tools.ietf.org/html/rfc8446
https://www.ietf.org/blog/tls13-adoption/
http://l7-filter.sourceforge.net/
https://suricata-ids.org/
https://www.snort.org/
https://zeek.org/
https://www.snort.org/faq/readme-ssl
https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management
https://docs.broadcom.com/doc/the-importance-of-broad-cipher-suite-support
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 9 of 69

properly combined, all these packet metadata, can offer valuable traffic insights (Anderson
and McGrew).

In the context of CyberSANE and Task 3.3. “Encrypted Network Traffic Analysis”, FORTH
proposes a methodology to generate signatures for intrusion detection using only packet
metadata extracted from TCP/IP packet headers. The resulted signatures enable intrusion
detection even in encrypted network traffic.

1.2 State-of-the-Art in Encrypted Traffic Analysis for Network
Security

Popular network intrusion detection systems (NIDS) like Snort14 and Suricata15 utilize pattern
matching and regular expressions matching algorithms to analyse network traffic. With the
ever-increasing network speeds, the research community has put effort in improving the
performance of NIDS using either commodity accelerators, such as GPUs (Vasiliadis,
Antonatos and Polychronakis) (Vasiliadis, Polychronakis and Ioannidis, MIDeA: A Multi-
Parallel Intrusion Detection Architecture)and parallel nodes (Paxson, Sommer and Weaver)
(Vallentin, Sommer and Lee) or specialized hardware, such as TCAMs, ASICs and FPGAs
(Meiners, Patel and Norige) (Sourdis and Pnevmatikatos). However, the majority of these
works are based on methods that extract content from network packet payloads to match
suspicious signatures. Traditional deep packet inspection is becoming insufficient for
encrypted network traffic (e.g., SSL/TLS protocols).

BlindBox (Sherry, Lan and Popa) performs deep-packet inspection directly on the encrypted
traffic, utilizing a new protocol and new encryption schemes. PrivDPI (Ning, Poh and Loh)
reduces the setup delay of BlindBox and retains similar privacy guarantees. (Shone, Ngoc
and Phai) propose a system that combines deep learning techniques to provide intrusion
detection. (Tang, Mhamdi and McLernon) present a deep learning approach for flow-based
anomaly detection in SDN environments, while (Niyaz, Sun and Javaid) utilize deep learning
in order to detect DDoS attacks in such environments. (Anderson and McGrew) compare
the properties of six different machine learning algorithms for encrypted malware traffic
classification. Moreover, (Amoli, Hamalainen and David) present a real-time unsupervised
NIDS, able to detect new and complex attacks within encrypted and plaintext
communications. Kitsune is a NIDS, based on neural networks, and designed for the
detection of abnormal patterns in network traffic (Mirsky, Doitshman and Elovici). It monitors
the statistical patterns of recent network traffic and detects anomalous patterns. Moreover,
(Rosner, Kadron and Bang) present a black-box approach for detecting and quantifying side-
channel information leaks in TLS-encrypted network traffic. These techniques identify
malicious events in the network, by examining the characteristics of the underlying traffic,
using exclusively machine learning approaches. Many research and commercial solutions
focus on inspection of encrypted network traffic mostly for network analytics (M. Conti, L. V.
Mancini and R. Spolaor) (Lotfollahi, Siavoshani and Zade) (Taylor, Spolaor and Conti).
OTTer (Papadogiannaki, Halevidis and Akritidis) is a scalable engine that identifies fine-
grained user actions in OTT mobile applications even in encrypted network traffic. (Orsolic,
Pevec and Suznjevic) use machine learning for the estimation of YouTube Quality of
Experience (QoE). To test their approach, authors collect more than 1k different YouTube
video traces under different bandwidth scenarios. (Mazha and Shafiq) investigate the Quality
of Service (QoS) of video in HTTPS and QUIC protocols. The set of features that expose

14 https://www.snort.org
15 https://suricata-ids.org

https://www.snort.org/
https://suricata-ids.org/

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 10 of 69

usable information is based on (i) network and transport layer header information for TCP
flows, and (ii) network layer features (based on inter-arrival time, packet sizes, packet/byte
counts, throughput) for QUIC flows. CSI (Xu, Sen and Mao) infers mobile ABR video
adaptation behaviour under HTTPS and QUIC using packet size and timing information.
Finally, (Khokhar, Ehlinger and Barakat) put YouTube under experimentation and perform
network traffic measurements for QoE estimation using network related features, as well.
(Ghiëtte, Griffioen and Doerr) demonstrate that it is possible to utilize cipher suites and SSH
version strings to generate unique fingerprints for bruteforcing tools used by an attacker.

Network middleboxes or client-side software that aim to inspect encrypted traffic can operate
by acting as proxies. The common procedure is to terminate and decrypt the client-initiated
TLS session, analyse the HTTP plaintext content, and then initiate a new TLS connection to
the destination. (Goh, Zimmermann and Looi, Intrusion detection system for encrypted
networks using secret-sharing schemes.) (Goh, Zimmermann and MarkLooi, Experimenting
with an intrusion detection system for encrypted networks.) propose mirroring the traffic to a
central intrusion detection system, which will be able to decrypt the traffic and perform deep
packet inspection, yet, without any privacy preserving guarantees. As Symantec states
“most cyber threats hide in SSL/TLS encryption” (which takes up to 70% of all network
traffic)16. Symantec Proxies and SSL Visibility Appliance decrypt traffic to support
infrastructure security and protect data privacy. More specifically, Symantec offers the
Encrypted Traffic Management (ETM) tool17 that provides visibility into encrypted traffic by
decrypting part of it; however, this is a technique that could eventually cause privacy
violations. Haystack enables network traffic inspection on Android mobile devices using a
mobile application (namely “Lumen”) that is distributable via the usual application stores.
Haystack offers device-local and context-aware traffic inspection on commodity mobile
devices. For full functionality even with encrypted network traffic, Haystack’s application
“Lumen” intercepts the encrypted network traffic via a local TLS proxy. The application
prompts the user to install a self-signed Haystack CA certificate in the user CA certificate
store at install time (Abbas Razaghpanah, Sundaresan and Kreibich).

Aiming to advance the state-of-the-art, FORTH proposes an automatic signature mining
method for intrusion detection in encrypted network traffic. The majority of works that inspect
encrypted network traffic exploits machine learning algorithms to examine the feasibility of
identifying the nature of the traffic (e.g., for network analytics or network security). FORTH’s
methodology builds on these feasibility results, while at the same time focuses on
establishing a procedure to effectively generate intrusion detection signatures in an
automated manner.

1.3 Encrypted Traffic Signatures

After a careful examination of the literature and during our analysis, we observed that
specific sequences of packet payload sizes can reveal discrete events that signify an
intrusion attempt inside a system or a network. In this section, we describe our proposed
signature language that is used to express such network traffic patterns.

First, we aim for an expressive but simple enough signature language to enable the
automated signature mining. While the automatic generation of the signatures is an offline
process, we aim also to support an efficient signature matching procedure at runtime on live

16 https://docs.broadcom.com/doc/ssl-visibility-en
17 https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management

https://docs.broadcom.com/doc/ssl-visibility-en
https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 11 of 69

network traffic. Also, we want to minimize the amount of state information that our intrusion
detection engine requires to store per flow to effectively match traffic patterns across packets
of the same flow. All the aforementioned requirements led us to build signatures using a
simple format that can be applied on sequences of packet payload sizes. For the
implementation of the intrusion detection engine, we will use an automaton, inspired by (Aho
and Corasick). Thus, we get the privilege of not having to maintain the previously observed
packets for backtracking, for each incoming packet. Yet, we are expressive enough to
identify the suspicious events that signatures indicate.

1.3.1 Signature Design and Representation

 illustrates some signature examples that we extracted during our analysis. The proposed
signature language uses a very simple format that is easy to follow. More specifically, when
a network flow contains one or more sequences of network packet payload sizes which are
combined with other network traffic characteristics (e.g., port numbers), an intrusion attempt
event is reported. For instance, when (i) at least 7 different network flows, with the same
source and destination IP addresses and the same destination port, contain a sequence of
4 packets with payload sizes 22, 976, 48, 16 bytes respectively, and (ii) the same network
flows, contain a sequence of 4 packets with payload sizes 52, 68, 84, 84 bytes respectively,
then our intrusion detection engine reports the existence of a password cracking attempt
with the Hydra tool18.

Intrusion attempt event Penetration tool Signature Source ports

SSH password cracking Hydra 22, 976, 48, 16 7

52, 68, 84, 84 7

File/directory scanning Dirbuster 608, 80 40

155, 156 35

SQL injection Sqlmap 194, 93 140

Table 1: Signature examples of intrusion attempts

Figure 1 shows how a sequence of packet payload sizes appears in time within a traffic
capture. This figure illustrates a password cracking attempt with the “hydra” tool. We observe
that the corresponding generated signatures from

18 https://tools.kali.org/password-attacks/hydra

https://tools.kali.org/password-attacks/hydra

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 12 of 69

 describe and express what Figure 1 shows. In detail, the signature for the password
cracking intrusion attempt reports when at least 7 network flows (with same IP addresses
and destination port and diversified by the source port) match the packet payload size
sequences 22, 976, 48, 16 and 52, 68, 84, 84. The packet capture that is presented in Figure
1 contains 9 different network flows (with same IP addresses and destination port and
diversified by the source port) and the two packet payload sequences: 22, 976, 48, 16 and
52, 68, 84, 84, respectively. Packet sequences in Figure 1 are presented in respect with the
inter-packet arrival times in milliseconds. Each bullet colour represents one network flow
(diversified by the source port):

Figure 1 Illustration of (selected) packet payload size sequences within a traffic capture of a SSH
password cracking attempt using the “hydra” tool.

1.3.2 Signature Generation Methodology

We extract the intrusion signatures from network packet traces using frequent sequential
pattern mining. More specifically, from our ground-truth sample collection, we detect
frequent packet payload size sequences that correspond to specific intrusion attempts.
Unlike other works, our approach does not depend on network statistical measures for the
encrypted traffic inspection (Anderson and McGrew). In the paragraphs that follow, we
present our methodology for the automatic signature generation. Also, Figure 2 illustrates
the workflow of our methodology.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 13 of 69

First, we process the traffic captures so as to keep only the network packets that are related
to the malicious activity. All the remaining packets other than the malicious activity under
examination are discarded. Similarly, we discard retransmitted TCP packets, as well.

Figure 2 Illustration of our methodology workflow.

Then, we use the joy tool19 to extract per network flow data that are later used for the
signature generation. More specifically, joy receives as input a packet capture with an
intrusion event. Joy returns a JSON file with network flow related information, such as the
sequence of lengths and arrival times of IP packets per network flow, DNS names,
addresses, TTLs, HTTP header elements and others. For each network flow originated from
the intrusion event under examination, we retrieve the sequence of non-zero packet payload
sizes and the packet arrival time. This sequence of non-zero packet payload sizes is later
used by the signature mining procedure. For the signature mining procedure, we chose to
utilize a frequent sequential pattern mining technique.

Frequent sequential pattern mining techniques are used to discover frequent sequential
patterns that occur in sequence databases. Benefiting from such techniques, in our
proposed methodology we choose to utilize a maximal sequential pattern mining algorithm.
Maximal sequential pattern mining is used to extract the frequent longest common
sequences of network packet payload sizes contained in traffic. Our methodology uses the
resulted sequences as potential signatures that can indicate an intrusion attempt. The
resulted signatures are mined using the VMSP algorithm (Fournier-Viger, Wu and Gomariz).
Finally, we select the maximal sequences that match to the ground truth information that we
have. For instance, the time window of the intrusion attempt is close (in time) to the
sequence’s first occurrence inside the network traffic.

In detail, the process to generate the signatures, as presented in Figure 2, is the following:

1. For each packet capture, we note the label that characterizes the intrusion event.
2. We diversify the packet captures per intrusion attempt event.
3. We break each packet capture into 5-tuple network flows. Each network flow is

hashed using the 5-tuple {source IP address, destination IP address, source port,
destination port, protocol}. Each relevant network flow is now labelled with the
corresponding intrusion event.

4. We parse each network flow with the joy tool, that exports the sequences of packet
payload sizes contained. We keep only the non-zero TCP packets, as explained in
Section 1.4.1.

5. We execute the VMSP algorithm to these sequences of packet payload sizes. The
VMSP algorithm performs maximal sequential pattern mining and reports the longest
sequences of packet payload sizes found.

6. We choose the most common longest sequences of packet payload sizes to build a
signature that will describe the corresponding intrusion attempt event.

19 https://github.com/cisco/joy

Intrusion events
traffic collection

Traffic processing
and filtering

Per flow data
extraction

Signature mining
Joy VMSP

https://github.com/cisco/joy

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 14 of 69

7. We repeat the process per intrusion event.

In Section 1.4.2, we explain in detail how we collect the ground-truth dataset that contains
the packet captures that characterize a malicious activity. Each packet capture is labelled in
the respecting packet capture. This ground-truth dataset is separated into two smaller sets
randomly. The first dataset contains a 30% of the total packet captures and the second
dataset contains the remaining 70%. The first dataset is used for analysis and signature
generation (i.e., training dataset), while the second one is used for testing (i.e., testing
dataset). In the literature, it is common to use the reverse proportions for analysis and testing
(i.e., 30% for testing and 70% for training). Yet, we want to stress the effectiveness of our
proposed methodology. In Section 1.4.3, we show that despite using a small dataset for
signature generation, our methodology produces effective signatures. The evaluation of the
signatures is performed in the testing dataset that contains the 70% of the packet captures.

As already discussed, we use the training dataset to create signatures that will describe a
malicious activity. The malicious activities that our training dataset contains is presented in
Table 2. Thus, the generated signatures describe the presented malicious activities
(characterized by events 1-9). The evaluation of the signatures produced can be found in
Section 1.4.3.

1.4 Signature Evaluation

In this section, we demonstrate the expressiveness of the proposed signature language by
automatically generating pattern signatures for a set of intrusion events and evaluating their
accuracy. We used 30% (randomly chosen) of the ground-truth packet captures as a
reference for the signature generation, and the remaining 70% for the accuracy evaluation.

1.4.1 Traffic Processing

We divide the network traffic collected during the attacks into network flows. A network flow
is characterized and represented by the standard 5-tuple that contains: (i) the source IP
address, (ii) the source port number, (iii) the destination IP address, (iv) the destination port
number and (v) the protocol (e.g., TCP). So, each network flow consists of packets that are
defined by a certain 5-tuple.

Since the network traffic that we collect is generated within a controlled and isolated
environment and the IP address of both machines is known, we can presume that the
resulted flows in a packet capture indicate the traffic generated by the malicious machine
during each corresponding attack.

Furthermore, TCP natively provides numerous mechanisms to detect and bypass
unpredictable network behaviour, including but not limited to packet loss and reordering
methodologies. As already mentioned, in our methodology we discard retransmitted TCP
packets, since such packets do not offer additional information to the flow. In addition, we
assume that packet payloads are encrypted and thus, our approach proposes processing
only packet metadata (e.g., packet payload size, packet direction). Packets that do not

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 15 of 69

contain payload are also not processed (TCP ACK packets), since they do not provide any
valuable information for our methodology.

1.4.2 Ground-truth Dataset Collection

For the ground-truth collection, we setup an environment with two virtual machines. The first
machine runs Kali Linux and the second machine runs a vulnerable Ubuntu distribution with
DVWA20 installed using a self-signed certificate to enable HTTPS connections. The two
machines are isolated from the network to ensure that no other machine is affected and a
safe intercommunication between the two machines is established. The Kali Linux machine
(IP address: 192.168.56.101) serves as the malicious entity that communicates with the
vulnerable Ubuntu machine (IP address: 192.168.56.103) in order to perform various
malicious activities (e.g., port scanning, file/directory scanning, password cracking, SQL
injection). The tshark tool21 is installed on the vulnerable machine and captures the incoming
network traffic during the intrusion attempts performed by the malicious machine. Figure 3
illustrates the testbed setup.

Figure 3: Illustration of our testbed setup for traffic collection.

We choose some popular vulnerability scanners to evaluate our methodology. Some of the
tools used for the intrusion events generation are DIRB22, NIKTO23, SQLMAP24, HYDRA25,
NMAP26, and METASPLOIT27. More specifically:

20 http://www.dvwa.co.uk
21 https://www.wireshark.org/docs/man-pages/tshark.html
22 https://tools.kali.org/web-applications/dirb
23 https://tools.kali.org/information-gathering/nikto
24 http://sqlmap.org
25 https://tools.kali.org/password-attacks/hydra
26 https://nmap.org
27 https://docs.rapid7.com/metasploit/

Attacker
machine

Victim
machine

192.168.56.101 192.168.56.103

Web server

(DVWA,

self-signed

certificate)

Tshark for

network packet

capture

Kali linux:

Dirb, nikto,

sqlmap, hydra,

nmap, msfconsole

Logs intrusion

event start time

and end time

http://www.dvwa.co.uk/
https://www.wireshark.org/docs/man-pages/tshark.html
https://tools.kali.org/web-applications/dirb
https://tools.kali.org/information-gathering/nikto
http://sqlmap.org/
https://tools.kali.org/password-attacks/hydra
https://nmap.org/
https://docs.rapid7.com/metasploit/

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 16 of 69

• DIRB is a web content scanner that looks for existing (and/or hidden) web objects. It
basically works by launching a dictionary-based attack against a web server and
analysing the response.

• NIKTO examines a web server to find potential problems and security vulnerabilities.

• SQLMAP is an open-source penetration testing tool that automates the process of
detecting and exploiting SQL injection flaws and taking over of database servers.

• HYDRA is a parallelized login cracker which supports numerous protocols to attack.

• NMAP is a free and open-source utility for network discovery and security auditing.

• METASPLOIT is a penetration testing software (we use the msfconsole, which is the
metasploit framework console).

We perform numerous instances of attacks for different times and days within a one-month
period. Table 2 presents the events generated.

Overall, we collected a set of over 120 packet captures. Each individual packet capture
simulates an intrusion attempt as described in Table 2. For each packet capture, we log the
start time and end time of each intrusion attempt event.

Tool name Event

1 dirbuster Web content scanning in victim machine

2 nikto Web server scanning in victim machine

3 hydra Admin login attempt to web server in victim machine

4 hydra Root login attempt to web server in victim machine

5 metasploit Directory scanning to web server in victim machine

6 metasploit File scanning to web server in victim machine

7 sqlmap SQL injection to web server in victim machine

8 nmap Detection of remote services version numbers

9 nmap OS detection, version detection, script scanning, traceroute

Table 2: Intrusion attempts to the vulnerable web server.

1.4.2.1 CyberSANE pilots

In the context of CyberSANE, FORTH will receive ground-truth data from data providers,
such as LSE, to generate signatures for intrusion detection tailored to their systems. So far,
FORTH has shared instructions and guidelines on how to generate abnormal traffic (e.g.,
using a penetration tool) in an isolated and protected environment and how to collect network
traffic. In addition, FORTH has shared a list with the specific information that is required to
effectively build signatures that will be used for intrusion detection in pilots’ systems. The
required information is the following:

• Infected and benign network traffic captures (suggested protocols: TCP, HTTPS,
TLS)

• For each infected network traffic capture, the following annotations are required: (i)
type/name of attack, (ii) attack start/end time, (iii) list of network flows involved in
each attack

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 17 of 69

1.4.3 Signature Effectiveness

As already discussed in the previous section, we divide the packet traces by intrusion event.
Then, we randomly select a 30% of each set to generate signatures, while the remaining
70% is used for evaluation.

Table 3 presents the resulting true positive and false discovery rates for each signature that
corresponds to one of the events from Table 2. Each packet capture in the dataset contains
only a single intrusion event type (event types: 1-9, Table 3). When a signature reports an
intrusion event, we compare it to the actual intrusion event. For instance, when a signature
reports that “web content scanning” probably occurs in a specific packet capture, we
compare this report to the actual intrusion attempt event. If the intrusion attempt event that
happens in the specific packet capture is the same as the event that was reported, then we
mark this report as correct. When an event is correctly reported, we increase the true positive
counter. If the report is incorrect, we increase the false positive counter for the signature.

Event # True Positive Rate False Discovery Rate (FDR)

1 (dirbuster) 100% 0%

2 (nikto) 100% 0%

3 (hydra) 100% 11%

4 (hydra) 100% 11%

5 (metasploit) 100% 11%

6 (metasploit) 100% 11%

7 (sqlmap) 100% 0%

8 (nmap) 100% 11%

9 (nmap) 100% 11%

Table 3: True Positive Rates and False Discovery Rates of the automated signature mining
methodology. The percentages presented are extracted through the comparison of the results of

our methodology to the ground-truth dataset.

The true positive rate of our signature generation methodology is 100% individually for each
event. This means that the signatures that are generated to report a specific intrusion
attempt event can correctly identify the existence of this event. For instance, the signature
that is generated for the identification of event no. 1 “web content scanning in victim
machine” using the dirbuster tool, correctly reports the existence of such event in every
packet trace that indeed contains such event (signature TPR for event no. 1: 100%).

Besides the true positive rate, another metric that we believe is necessary for the evaluation
of our methodology is the false discovery rate for each intrusion attempt event. Reporting
intrusion attempt events using only the encrypted network traffic can easily become tricky,
since the cross- validation is a challenging procedure. A network intrusion detection system
must be able to report any traffic behaviour that is suspicious, while it is equally important to
not falsely report events that are not existent in the network. The false discovery rate of our
methodology is reported in Table 3. False discovery rate is calculated as:

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 18 of 69

𝐹𝐷𝑅 =
𝐹𝑃

(𝑇𝑃 + 𝐹𝑃)

where 𝐹𝑃 stands for False Positive and 𝑇𝑃 for True Positive. Our signatures generation
methodology presents a maximum false discovery rate for some of the intrusion events.

Minimizing the false positives that an intrusion detection system presents is very important.
Our signature generation methodology using the frequent pattern mining technique presents
a perfect true positive rate, with an acceptable false discovery rate (up to 11%). At this point,
we want to highlight that the false discovery rate that is presented by some events (e.g.,
event no. 3, event no. 5) is negligible, if we consider that these signatures correctly report
the existence of the tool and the traffic that it generates. Even though the granularity of the
event is not fine-grained (the generated signature for the hydra tool cannot distinguish
between events no. 3 and 4), the signature is still able to correctly identify the existence of
the traffic that the tool generates in a network.

Finally, we use normal HTTPS traffic samples to measure the FDR for the signatures
generated. The samples that we used for this experiment are publicly available in the
Malware Capture Facility Project repository28. In this normal HTTPS traffic tested, the
signatures that describe the events that previously reported an 11% FDR now result to 0%
FDR.

1.5 Intrusion Detection Engine Implementation

A very efficient algorithm that popular signature-based intrusion detection systems use for
pattern matching is the Aho-Corasick algorithm (Aho and Corasick). Pattern matching is the
core operation of any deep packet inspection system, such as a network intrusion detection
system. A deep packet inspection system dives into the network packet payloads in order
to extract sequences of characters, namely strings. These strings are compared against
well-known patterns that describe, for instance, the communication between a known
botmaster with its bots. In our approach, we assume that the network traffic that should be
inspected by our intrusion detection system contains encrypted payloads. Thus, we do not
extract any payloads and we only process packet metadata. These packet metadata can be
derived from the contents of network packet headers. For example, even in a TLS protected
connection, the packet headers are not encrypted. As we have already mentioned, our
methodology uses packet metadata like the packet payload sizes (i.e., data transmitted in
the packet) and packet directions in order to generate signatures. We express the packet
direction implicitly since a signature will match against one-directional network flows. A
signature that we produce contains sequences of packet payload sizes. These sequences
of packet payload sizes must be matched against the incoming network traffic in order to
report an intrusion attempt event that is described by the corresponding signature. Yet,
packet payload sizes are integers and cannot be expressed as strings. Thus, integrating
signatures of packet metadata into a typical signature-based intrusion detection system that
performs deep packet inspection in packet payloads, is not trivial. In the following
paragraphs, we describe the implementation of our system.

1.5.1 Efficient Automaton

28 https://www.stratosphereips.org/datasets-normal

https://www.stratosphereips.org/datasets-normal

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 19 of 69

The choice of the pattern matching algorithm is crucial for efficiently matching large data
streams against multiple patterns. Inspired by the Aho-Corasick string matching algorithm
(Aho and Corasick), we implement a finite state machine to efficiently match a set of patterns
(i.e., signatures) against streams of network packets. We extend the Aho-Corasick algorithm
to enable integer matching, instead of strings, similar to (Papadogiannaki, Deyannis and
Ioannidis, Head (er) Hunter: Fast Intrusion Detection using Packet Metadata Signatures.)
(Papadogiannaki, Halevidis and Akritidis).

The Aho-Corasick algorithm is a very efficient string searching algorithm that matches the
items of a finite set of strings against an input stream. It is able to match a large volume of
patterns simultaneously, so its complexity does not depend on the size of the pattern set. It
constructs an automaton that performs transitions for each 8-bit ASCII character of the input
text. For our approach, we replace the 8-bit characters with 16-bit values that represent the
packet sizes. The algorithm builds a finite state machine, resembling a trie with added
“failure” links between the trie nodes. When there is no remaining matching transition, we
move through the state machine following the failure links, performing fast transitions to
other branches of the trie that share a common prefix. In this way, we avoid the expensive
back-tracking operation, so the algorithm allows the interleaving of a large number of
concurrent searches, such as in the case of network connections, because the state can be
preserved across input data that are observed at different points in time by storing a pointer
to the current state of the automaton, with the state maintained for each connection.
Backtracking is an operation very expensive since it requires the maintenance of per-flow
state for previously seen packet payload sizes. In order to boost the resulted performance,
we build a Deterministic Finite Automaton (DFA) by unrolling the failure links in advance,
adding them as additional transitions directly to the appropriate node.

To present our automaton’s characteristics, i.e., the automaton size and the compilation
time, we generate signature sets out of varying packet sequences, each time increasing the
number of signatures and the packet sequence length. Figure 4 presents the size of the
automaton in regard to different signature sets. More specifically, we present the size of our
automaton, using 500, 1K, 5K, 10K and 50k randomly generated patterns of sequence
length 6, 8, 10 and 12 packets; for example, the automaton that is generated using 10,000
signatures, where each signature resembles a sequence of 10 packet sizes, is around 1.5
GB. Figure 5 presents the compilation time of the automaton based on the same signature
sets. The compilation time of the automaton does not affect the end-to-end performance
negatively, since the compilation happens offline and only once.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 20 of 69

Figure 4: Automaton size.

Figure 5: Automaton compilation time.

1.5.2 Pattern Matching Engine

To uniformly execute the pattern matching engine across every device in our testbed
machine (i.e., the main processor Intel i7-8700K, a high-end discrete NVIDIA GTX 980 GPU
and an Intel UHD Graphics 630 integrated GPU), we utilize the OpenCL framework. Our
testbed system runs Arch Linux 4.19.34-1-lts and we use the Intel OpenCL 2.1 SDK for the
Intel devices (i.e., the UHD Graphics 630 GPU and the Intel i7- 8700K CPU) and the OpenCL
SDK from the NVIDIA CUDA Toolkit 10.2.120 for the NVIDIA GTX 980 GPU.

In OpenCL, an instance of a given code block and a thread that executes it is called work-
item and a set of multiple work- items is called work-group. Different work-groups can run
concurrently on different hardware cores. Typically, GPUs contain a significantly faster
thread scheduler, thus it is recommended to spawn a large number of work-groups, since it
hides the latency that is introduced by heavy memory transfers through the PCIe bus. While
a group of threads waits for data consumption, another group can be scheduled for
execution. On the other hand, CPUs perform more efficiently when the number of work-
groups is close to the number of the available cores. When executing compute kernels on
the discrete GPU, the first thing to consider is how to transfer the data to and from the device.
Discrete, high-end GPUs have a dedicated memory space, physically independent from the
main memory. To execute a task on the GPU, we must explicitly transfer the data between
the host (i.e., DRAM) and the device (i.e., GPU DRAM). Data transfers are performed via
DMA, so the host memory region should be page-locked to prevent any page swapping
during the time that transfers take place. In OpenCL, a data buffer, which is required for the
execution of a computing kernel, must be created and associated with a specific context.
Different contexts cannot share data directly. Thus, we must explicitly copy the received
network packets to a separate page-locked buffer that has been allocated from the context
of the discrete GPU and can be moved towards its memory space via PCIe. Data transfers

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 21 of 69

(host → device → host) and GPU execution are performed asynchronously, permitting a
pipeline of computation and communication, something that significantly improves
parallelism. Moreover, when the processing is performed on an integrated GPU, expensive
data transfers are not required, since both devices have direct access to the host memory.
To avoid redundant copies, we explicitly map the corresponding memory buffers between
the CPU and the integrated GPU.

Figure 6 presents an illustration of the packet processing scheme in a hardware setup of a
commodity machine that contains one main processor packed in the same die with an
integrated GPU and one discrete high-end GPU. As previously explained, to process a
network packet on a discrete GPU, the steps are the following:

i. the DMA transaction between the NIC and the main memory
ii. the transfer of the packets to the I/O bus that corresponds to the discrete GPU
iii. the DMA transaction to the memory space of the discrete GPU
iv. the execution of the OpenCL processing kernel and
v. the transfer of the results back to the host memory.

Due to the PCIe interconnect inability to quickly handle small data transfers, all data transfers
are instructed to operate on large batches. The packet processing on an integrated GPU
follows a shorter path, since the integrated GPU and CPU share the same physical memory
space, which allows in-place data processing, resulting to lower execution latency.

Figure 6: An illustration of the packet processing scheme in a hardware setup that contains one
main processor packed in the same die with an integrated GPU and one discrete high-end GPU.

Memory accesses can be critical to the overall performance sustained by our application.
GPUs execute code in a Single-Instruction-Multiple-Threads (SIMD) fashion, meaning that
at each cycle multiple threads execute the same instruction. Moreover, they offer support
for Single-Instruction-Multiple-Data (SIMD) execution when using vector data types (such
as the ushort16 that is able to store 16 16-bit long values), since the vectorized code is
translated to SIMD instructions (Shen, Fang and Sips). Furthermore, OpenCL offers the so-
called local memory, which is a memory region that is shared between every work-item
inside a work-group. This local memory is implemented as an on-chip memory on GPUs,
which is much faster than the off-chip global memory. Hence, when we execute our engine
on GPUs, we can utilize this local memory in order to improve the overall performance.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 22 of 69

The overall architecture of our intrusion detection system is presented in Figure 7. The
system utilizes one or several CPU worker-threads, assigning each one to a single input
source (e.g., NIC).

Figure 7: Overview of the packet processing architecture.

Once a CPU thread receives a network packet, it forwards it to a receive buffer, called RX
batch (Figure 7). At this point, the receive buffer is filled with packets belonging to one or
several TCP flows. When the buffer is full, our system generates an execution batch with
the traffic contained in the receive buffer. The execution batch contains the payload sizes of
the received network packets, divided and ordered by the corresponding flows. In this way,
we transform the input traffic to series of payloads with each series containing information
of a single flow, ready to be processed by our pattern matching engine. Then, we transfer
the execution batch to the device’s memory address space. In the meantime, the receive
buffer continues to accept incoming packets, avoiding packet losses.

We implement the pattern matching engine of our system as an OpenCL compute kernel.
Unlike other relevant works that follow a packet-per-thread processing approach (Dobrescu,
Egi and Argyraki) (Han, Jang and Park) (Vasiliadis, Polychronakis and Ioannidis, MIDeA: A
Multi-Parallel Intrusion Detection Architecture) (Papadogiannaki, Koromilas and Vasiliadis),
we follow a flow-per-thread approach. This means that each thread reads at least one
network flow from the execution batch and then performs the processing (Figure 7).
Whenever a batch of packets is received and forward for TCP flow ordering and processing
by the device, new packets are copied to another batch in a pipeline fashion. Moreover, to
fully utilize the SIMD capabilities of the hardware, we represent the payload sizes in the
execution buffer as unsigned short integers. In this way, we are able to access the data
using the ushort16 vector data type, as described above, in a row-major order, being able
to fetch information for 16 packets at once. During the processing, the pattern matching
kernel uses one ushort value as input, representing one payload size, at each step, in order
to traverse the automaton.

If a signature is identified, the engine reports the suspicious TCP flow identifier, packed with
the packets that matched the signature – using the first and the last packet contained in the
signature, together with the signature identifier. We encode this information using four ushort
values for each TCP flow that is identified as suspicious. In this way we minimize the amount

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 23 of 69

of data that need to be transferred back from the device to the host’s DRAM. Moreover, in
cases where an execution batch does not contain any suspicious flows, the engine does not
need to perform any other memory transfers except for initially transferring the data for
processing. Finally, in order to provide support for even further analysis, we keep a copy of
the packet payload and metadata to the host’s memory until their processing in the GPU
has finished so their payloads can be examined in combination with the information provided
by the engine.

1.5.3 Performance Micro-benchmarks

For the performance evaluation of our implementation, we use a commodity high-end
machine. The hardware setup of our machine includes an Intel i7-8700K processor with 6
cores that operate at 3.7 GHz with hyper-threading enabled, providing us with 12 logical
cores, configured with 32 GB RAM. The main processor is packed with an Intel UHD
Graphics 630 integrated GPU. In our setup, we use Arch Linux with kernel version 4.19.34-
1-lts. In addition, we use a NVIDIA GeForce GTX 980 GPU. During the micro-benchmarks,
the pattern matching engine reads the traffic from memory. The performance results that
are presented in Figure 8, Figure 9 Figure 10 display the median values occurring after 30
runs per configuration. In these figures, the colour-filled bars indicate the performance
achieved by the pattern matching engine when the selection of (i) signatures and (ii) input,
results to a computationally relaxed condition. In the figure, we present the most realistic
scenario, where we have less than 10% malicious traffic. White-filled bars with borders
indicate the performance achieved in a computationally loaded condition (i.e., 100%
malicious traffic), which is the most worst-case scenario. We present the latency using
different packet batch sizes. The discrete GPU introduces an almost stable latency across
different batch sizes, close to 2ms. Executing on the integrated GPU results to higher latency
records, up to 5ms. Executing on the main processor adds very low latency – especially for
small batch sizes – making it ideal for real-time, latency-intolerant environments.

Figure 8: Latency of the pattern matching engine using the discrete GPU

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 24 of 69

Figure 9: Latency of the pattern matching engine using the integrated GPU.

Figure 10: Latency of the pattern matching engine using the CPU.

1.6 Discussion

In this section, we discuss traffic analysis resistance techniques and we comment about the
new version of TLS in respect to FORTH’s proposed methodology.

1.6.1 Traffic Analysis Resistance

Features and characteristics of network traffic that present patterns after encryption (e.g.,
packet sizes and timing), can reveal information about the traffic’s nature and contents.
Padding packet sizes or transmitting packets at fixed timing intervals can obfuscate the
behaviour of a communication mean for the preservation of privacy and the reduction of user
information leakage. AnonRep (Zhai, Wolinsky and Chen) builds on top of anonymity and
privacy guarantees for the case of reputation and voting systems. TARANET (Chen, Asoni
and Perrig) employs packet mixing and splitting to achieve constant-rate transmission,
providing anonymity at the network layer. (Frolov and Wustrow.) propose uTLS that enables
tool maintainers to automatically mimic other popular TLS implementations to prevent
censorship that originate from traffic analysis. Walkie-Talkie is a website fingerprinting
defense approach that produces burst packet sequences that leak less information to the
adversary. This makes sensitive and non-sensitive pages look the same (Wang and
Goldberg). Vuvuzela (Hooff, Lazar and Zaharia) and Atom (Kwon, Corrigan-Gibbs and
Devadas) are scalable systems that employ differential privacy to inject noise into
observable metadata. Such techniques can circumvent the proposed methodology. Still,
techniques like traffic morphing add substantial overhead to a system, making it impractical
for cases, in which the privacy preservation is not a requirement.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 25 of 69

1.6.2 TLS 1.3

Expecting the imminent adoption of TLS 1.3, we choose not to perform TLS certificate
fingerprinting, like other relevant solutions29. The TLS 1.3 handshake is quite different from
earlier versions of TLS, with a large portion of it getting encrypted (including certificates)
(Kotzias, Razaghpanah and Amann). Thus, the introduction of TLS 1.3 encourages our
proposed methodology, in which we simply search for sequences of packet metadata, like
the packet payload size and the inter-packet arrival time.

1.6.3 Future work

Signature generation is a time-consuming procedure that requires a huge amount of ground-
truth data, constantly updated to keep up with modern attacks and maintained for different
versions of software and operating systems. This work aims to offer contemporary
signatures that will enable intrusion detection in encrypted networks and enrich the
functionality of outdated, traditional intrusion detection tools that struggle to keep up with the
increasing growth of network encryption in communication channels. During the life of the
CyberSANE project, FORTH will keep on collecting data to produce more signatures, not
only for penetration tools but also for malware that exist in the wild. The goal of this work is
the generation of signatures that will enable intrusion detection in encrypted network
packets.

29 https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html

https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 26 of 69

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 27 of 69

Chapter 2 Transformation and Normalization

Techniques

2.1 Introduction

Nowadays cyber threats are becoming more and more sophisticated. Attackers have a wide
variety of resources and information at their disposal and even, sometimes, time and money
are no longer a problem. All these factors outline the importance of trusting security incidents
data, which should be reliable, structured and easy to understand. Besides, organizations
need to share information quickly and efficiently, given that incidents should be remediated
as soon as possible. Here is where transformation and normalization techniques can make
a difference: they assist analysts in various ways, such as:

- Allowing an easy share of incident data.
- Standardizing information gathered to make it more readable for humans.
- Formatting and structuring the information so it is more recognizable while discarding

what is not needed.

To sum up, these techniques allow for a quicker and more coordinated answer when facing
information security incidents.

2.2 State-of-the-art: transformation and normalization techniques

2.2.1 CEF

CEF or Common Event Format is known to be an auditing and logging file format developed
by ArcSight. This standard is well suited to normalize output for log generating applications
and devices while offering most important information. Its objective is to improve
interoperability between security and network applications and devices. Therefore, data can
be gathered and correlated with no effort. Amongst its main features are:

• Text-based format.

• Extensible.

• Possibility of supporting multiple device types.

• It does not determine ID for events generated by devices. Actually, devices and
applications are responsible of this task.

The syntax for log records is made up of a standard prefix or header and a variable
extension, while grouped in key-value pairs. In detail:

Prefix contains both date and hostname:

Jan 18 11:07:53 zurich message

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 28 of 69

Then, the variable extension of the message should include various fields separated by a
pipe (“|”) with the following structure:

CEF:Version|Device Vendor|Device Product|Device Version|Signature

ID|Name|Severity|Extension

Where:

• Version (integer) or identifier of the CEF format. It can be used to better understand
what the structure will be, i.e., what are the fields included in the register.

• Device vendor, product and version or string that helps identifying which is the device
responsible for sending the report.

• Signature ID or identifier for each event. There cannot exist two equal identifiers.
This field is quite important given that provides additional information about the type
of event reported.

• Name: this field is a string which provides a description of what the event consists
of.

• Severity field (integer) provides information about how critical an event is. It is
evaluated in a scale which varies from 0 (least significant event) to 10 (more critical
event).

• Extension: the field is a collection of a variable number of key and value pairs.

CEF format can be implemented on various types of devices:

• Cloud: in this case, the provider must implement the SmartConnector for ArcSight
Common Event Format REST.

• On-premise: the device is required to implement the ArcSight Syslog
SmartConnector.

Finally, CEF must be encoded in UTF-8 format. This means that:

- Spaces are valid.
- Any kind of pipe (|) used must be escaped with a backslash. This is to be done only

in the header but not in the extension.
- Other symbols that should be escaped are backlash (\), equal sign (=) and multi-line

symbols such as (\n) or (\r).

A real example of CEF would be the following:

Dec 18 20:37:08 <local0.info> 10.217.31.247 CEF:0|Citrix|NetScaler|NS10.0|APPFW|
APPFW_STARTURL|6|src=10.217.253.78 spt=53743 method=GET request=http://vpx247.ex
ample.net/FFC/login.html msg=Disallow Illegal URL. cn1=233 cn2=205 cs1=profile1 c
s2=PPE0 cs3=AjSZM26h2M+xL809pON6C8joebUA000 cs4=ALERT cs5=2012 act=blocked

2.2.2 STIX

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 29 of 69

STIX or Structured Threat Information eXpression is a collaborative, standard and structured
language employed to represent and share cyber threat information including both incidents
and threats.

Nowadays, any organization is expected to keep and update information about threats, that
is, cyber threat intelligence. This usually includes different past attacks and vulnerabilities,
actions that could potentially lead to recognize these attacks as well as mitigation strategies.
Therefore, any company can make use of STIX to describe and store cyber threat
intelligence information. STIX can assist organizations when sharing cyber threat
intelligence with providers, partners or associates, resulting in a stronger net of information,
more structured and organized. At the same time, STIX is currently used by analyst to
recognize patterns that could potentially indicate threats.

STIX provides a way to structure cyber threat information and helps improving
interoperability. Typical elements of the architecture joined by STIX include the following:

- Incidents or occurrences of malicious actions.
- Adversary TTPs (Tactics, Techniques and Procedures). Some examples of these

would be malware, exploits or attack patterns.
- Cyber Threat actors, campaigns and initiatives.
- Indicators.

According to MITRE, all these elements are tied together with STIX architecture:

Figure 11: How STIX can relate cyber threat information (MITRE)

There are two main modes when using STIX:

1. Manually: this mode requires nothing more than an XML editor.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 30 of 69

2. Programmatic: a bit more complex, it will be necessary to employ Python and Java
bindings as well as some Python APIs.

STIX can be labelled as transport-agnostic, i.e., neither structure nor serialization depend
on a specific transport mechanism. When willing to share STIX objects, it is quite useful to
use TAXII platform (Trusted Automated Exchange of Intelligence Information). TAXII has
been tailored to transport STIX objects specifically.

STIX information model employs various types of data, some of them are:

• Boolean (true/false)

• External-reference (reference to an external content)

• Identifier (for a STIX Domain Object)

• String

• Timestamp

• List (sequence of values ordered)

2.2.3 IODEF

IODEF (Incident Object Description Exchange Format) defines a format employed to share
computer security information amongst the actors involved, typically CSIRTs. Messages are
presented in a human-readable way, i.e., not in machine format. It makes use of XML
language and encodes information about networks, hosts and services running on systems.
XML helps when defining a framework for data encoding due to its extensibility: various
character encodings can be defined easily. IODEF aim is to improve communication
between CSIRTs by means of sharing structured information about incidents. Therefore,
some of its advantages can be summed up as:

1. Less resources are required to process incident data.
2. Less effort is needed to normalize security information.
3. A common format is provided to share information and incident handling.

It is necessary to bear in mind that:

• IODEF has been designed and was created as a transport model, i.e., it is not the
best way to store data.

• Incidents can be defined in many ways. Although IODEF is credited to be flexible
enough, it does not impose one strict incident format to be adopted. Incidents are
quite different from each other so there would be useless to try to homogenise them.
Flexibility to describe different kinds of incidents is vital.

• IODEF is compatible with IDMEF (Intrusion Detection Message Exchange Format),
which has been developed for Intrusion Detection Systems (IDSs).

IODEF is composed of the following fields:

- IncidentID or incident identification number.
- AlternativeID: this ID should be used by other CSIRTs rather than the one which

defined and labelled the incident.
- RelatedActivity: this field should include all IDs from other incidents related.
- DetectTime, that is, when was the incident first detected.
- StartTime and EndTime: both fields store information of when did the incident start

and end.
- ReportTime: similar to the previous one, but this time when was the incident reported.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 31 of 69

- Description of the event.
- Assessment (of the event).
- Method: this field should include all those techniques employed by the attacker.
- Contact information of any group which may be engaged in the incident.
- EventData: the aim of this field is to store a description of the events tied to the

incident.
- History or log of the actions, events and noticeable things that happened while the

incident was being managed.
- AdditionalData.

2.2.4 Other options to normalize data

The most commonly used, maybe, transformation technique to normalize values on a similar
scale is the min-max normalization. It is preferred in occasions where the approximate
upper and lower bounds of the data come with no -or only a few- outliers which are also
distributed uniformly. This type of normalization techniques are also known as “scaling to a
range” (Google Developers, 2020), since it involves the conversion of natural range values
into a standard, fixed, and easily readable range of values (i.e., between 0 and 1). Regarding
the cyber-security domain, prominent min-max normalizations have found application on
transforming the input data of unsupervised deep learning approaches for network intrusion
detection purposes (Alom & Taha, 2017), but also contributing to the identification and
aggregation capabilities of Dark Web analysis tools like the BiSAL (Al-Rowaily, et al., 2015).
One more popular variation of scaling lies to the statistical z-score transformation which is
able to identify how a value varies from the mean in terms of standard deviations. This
normalization technique is useful for datasets with a few only outliers, where a couple of
works over the last few years have either integrated or implemented promising and novel
techniques, respectively. (Gashteroodkhani, et al., 2019) presented a z-score time-time
matrix solution for the protection of microgrids, while (Meira, et al., 2020) proposed the
combination of z-score and min-max transformations as the medium to evaluate the
performance of unsupervised techniques in cyber-attack anomaly detection.

Apart from the min-max and z-score normalization techniques, the logarithmic
transformations are another area of normalizations which can be used to narrow down a
wide range of dataset values by computing their log. This type of normalization is quite
efficient in those cases where the data which have to be normalized are influenced by many
independent factors and there are a few only values with many points. Due to the fact that
the log scaling procedure greatly changes the distribution itself, all these data distributions
are also known as power law distributions. The outcome of logarithmic transformations has
been proved to improve the linear data transformation techniques met in zero-day attacks
tools once they are combined with the appropriate anomaly detection techniques (Aleroud
& Karabatis, 2013). Furthermore, this kind of transformations could be also used to
normalize the events and alerts generated by the probes of specific Critical Infrastructures
(Di Sarno, et al., 2016), enhancing in this way their de-facto security information and event
management systems. On the other hand, there are cases where all values of a dataset, or
the values coming from different tools, could be benefited by normalizing them using a
square-root transformation. Typical use cases are met in variables engaged with Poison
distributions (Bartlett, 1936; Freeman & Tukey, 1950) where several enhancements have
been presented aiming to extend square-root applicability to more statistics data areas
(Almeida, et al., 2000; Molina, et al., 2017). At this point, it is worth noticing that values with
negative numbers have to be specially treated by adding a constant variable, sufficient
enough to move the minimum possible value of the distribution above zero.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 32 of 69

However, if the provided data set includes extreme outliers, then all of the afore-
mentioned normalization techniques tend to suffer both in terms of performance and training
stability. For these reasons, the application of a feature clipping normalization technique
is usually preferred and conducted either before or after other normalization procedures. In
generic, a feature clipping takes into account all the feature values belonging above or below
a certain value, and reallocates them to a predefined and fixed value. Feature normalizations
have been used before as the medium to predict cyber-security incidents of network-level
malicious activities (Liu, et al., 2015), while an even recent study (Ferreira, et al., 2019)
explored feature normalization techniques in the context of a ML-based insider threat
detection tool, aiming to evaluate and improve its performance on different classifiers. Last
but not least, (Box & Cox, 1964) presented another family of power transformations which
were able to detect the optimal normalizing transformation for different variables by simply
raising numbers to an exponent. Box-Cox normalization techniques have been widely
adopted and proved their efficacy in various domains of interest as an alternative
methodology in data cleansing (Osborne, 2010). On such occasions the quantitative
analysis of data was quite inferior and impractical when it was undertaken by the most
commonly used transformation techniques like the min-max, z-score, and square-root
(Osborne, 2002).

2.3 Overview of Security Monitoring Devices

2.3.1 Devices

2.3.1.1 SiVi (SID)

SiVi is a human-interactive visual-based anomaly detection system that is capable of
monitoring and promptly detecting several devastating forms of security attacks. The tool’s
novelty lies on the development of intuitively visualization graphs capable to offer a quick,
reliable, and intuitively overview in the network. In comparison with other tools that offer a
simple presentation of the traffic inside the network, SiVi uses pre-trained neural networks
that can identify different cyber-attacks.

SiVi implements a series of data visualization techniques, including both standard
visualization methods (graph lines, bars, columns, etc.) and advanced visualization graphs
(activity gauge, dependency wheels, etc.) aiming at providing the administrator with a
complete anomaly detection ecosystem. Tables with detailed information regarding the
network status also offer a thorough status of the system. SiVi also implements a series of
Machine Learning (ML) algorithms, realizing both supervised and unsupervised techniques
in order to create security events and timely inform the CCI operator for security attacks with
devastating results. The ML algorithms are periodically updated with new attack taxonomies
offering a constantly growing layer of protection. SiVi constantly monitors the network,
capturing and analysing the transmitted packets while seeking for inconsistencies and
anomalies at the tactical and the operational layer of the CII environment. More specifically,
SiVi combines two different functionalities that are described below.

1. The first functionality is the Security monitoring and analysis mechanism (an IDS
tool) which means it combines different sensors in different layers. In the network
layer, SiVi uses the Suricata as a sensor, and several custom Machine learning (ML)
sensors for the monitor and analysis of different communication protocols, while in
the host layer it leverages the functionalities of the OSSEC Server. Thus, it collects
security logs from all these sensors and transforms them into security event (by

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 33 of 69

mapping them in a unified format, Appendix 1). Figure 12 presents a high-level
architecture describing this process.

Figure 12: SiVi Security monitoring and analysis mechanism

In the network level the sensors (Suricata and ML sensors) receive network packets
that are converted into network flows as an input. These flows are analysed and
eventually each sensor results a security log to inform the tool operator. In the case
of host layer sensors, the given input refers to logs coming from the hosts (e.g.
syslog, eventlog, snort) while the output of the sensors refers to security logs (alerts
in OSSEC terminology). All these security logs coming from different sensors will be
translated into a unified security event (Appendix 1) to be easily interpretable from a
correlation engine (not included in SiVi). Finally, the collected security events will be
depicted on SiVi’s dashboard.

2. The second functionality provides the Visual Analytics (Anomaly Detection). In this
part, SiVi analyses network flows through pre-trained neural networks that can
identify different cyber-attacks in order to detect anomalies to the network level and
the communication between the network assets. The network flows are captured via
a network monitoring sensor and are used as an input to pre-trained anomaly
detection models to identify malicious flows. The results are depicted to the SiVi
dashboard by allowing the users to create custom widgets by using different fields
of the anomaly detection procedure. Figure 13 presents a high-level architecture
describing the previous process.

Figure 13: SiVi anomaly detection mechanism

SiVi contains a user friendly, uncongested dashboard providing useful information to the
SiVi users. Its near real-time nature formulates SiVi as a tool capable to be used in everyday
activities, since the integration with existing databases of attacks can classify the tool on the
tactical level of the enterprise.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 34 of 69

2.3.1.2 Encrypted Network Traffic Analysis (FORTH)

As it is stated in the description of Task 3.3, the goal of the tool is the analysis of encrypted
network traffic for specifying patterns that signify the existence of suspicious and malicious
activities online, taking also into account the outcomes of T3.1. In this task, existing network
traffic, payload-independent classification techniques on identifying traffic patterns, which
originate from packet metadata (such as frequent sequences of packet lengths and inter-
arrival times) available in encrypted network flows, will be investigated and adopted. The
resulted patterns will be processed in order to build a representation format that will assist
the unified integration in T3.5. The outcome of this step will provide insight on the proper
metadata handling and processing in order to produce network signatures that will be used
in order to enrich current network inspection systems’ functionality. The network signatures
will be produced using a subset of a ground-truth malicious traffic dataset and will be then
tested against the remaining traffic samples.

In the next paragraphs, we present the design of FORTH’s Encrypted Network Traffic
Analysis tool, which (i) is able to identify suspicious and malicious network activities even in
encrypted networks and (ii) will serve as a LiveNet component in the CyberSANE
architecture.

First and foremost, our tool’s operation is divided into two distinct, asynchronous and
independent parts.

1. The first part is the offline analysis operation, where malicious network traffic traces
are analysed in order to extract meaningful information. More specifically, FORTH
investigates (i) which network packet metadata are able to expose the nature of the
traffic (e.g., a cyber-attack) and (ii) how we can handle, express and process these
metadata to extract signatures that will indicate an attack or another network related
event. This means that network traffic traces, which are known to contain malicious
behaviour are analysed, and network packet metadata sequences that can indicate
this behaviour are extracted.

2. Then, these packet metadata sequences are expressed into signatures using
FORTH’s proposed signature language. Examples of the proposed pattern language
can be found in Section 1.

The output of the offline analysis part (i.e., signatures) is then delivered to the intrusion
detection engine (second part). The intrusion detection engine monitors network traffic
against the signature set and reports any matches that could signify malicious or suspicious
behaviour (e.g., a cyber-incident). The reports are logged and printed as text in the standard
output along with periodic statistics of the processing operation. An example of the intrusion
detection engine’s output is presented in Figure 14. The output of the intrusion detection
engine can be verbose or not. If we wish to get fine-grained information about the signature
matches, we choose the verbose output, which prints information about the signatures that
matched and information about the network flows that triggered the matches and indicate a
potential suspicious activity. More specifically, for each signature match, our tool reports the
signature (i.e., contains the signature id, the signature pattern, the signature length (number
of items per sequence) and signature details (e.g., attack type, name, CVE, URL reference,
etc.) and the network flow 5-tuple (i.e., the source IP address, the source port, the
destination IP address, the destination port and the protocol).

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 35 of 69

Figure 14: Output of the Intrusion Detection Engine

At its current form, FORTH’s tool prints the results in the standard output as plain text.

2.3.1.3 GLORIA (S2)

GLORIA is a platform developed with the aim of managing security incidents and
cybersecurity threats by means of correlating events. It is based on SIEM (Security
Information and Event Management) tools but goes one step beyond, providing extensive
monitoring and data treatments in two ways:

1. Employing advanced intelligence correlation techniques to fight threats.
2. Using orchestration mechanisms to achieve higher efficiency for the IRTs.

Amongst reasons to employ GLORIA, there are the following:

✓ Massive security incident data processing with little effort.
✓ Ability to aggregate multiple sources, i.e., not being restricted by high number of

inputs.
✓ Correlation can be performed either by Gloria or by the device which provides the

information.
✓ Possibility to reduce number of alerts by means of employing previously aggregated

information.

Gloria has been designed as part of an ecosystem or group of Spanish cybersecurity
systems and could help security analysts in several ways. When integrated in this team of
systems, Gloria can share security event information as well as gathered data. The tool can
provide some functionalities such as:

• Security incident information gathering based on both NIDS and HIDS.

• IT and OT monitoring.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 36 of 69

• Counter-intelligence to fight cyber threats. This is done by means of data correlation.

• Command shell to manage the platform available if needed.

• Reduced response time and reduction on the amount of time a human analyst is
needed.

GLORIA has been designed to process events with a funnel model while in touch with other
cyber security components. The idea is shown in Figure 15:

Figure 15: Event processing model (GLORIA)

Finally, GLORIA can identify and classify encrypted streams. To achieve that, it makes use
of techniques to analyse encrypted network traffic. Sometimes, it also relies on other tools
such as CARMEN (detection of APTs) and L-ADS (Live-Anomaly Detection System).

2.3.1.4 ATOS XL-SIEM

This tool is made up of two components:

1. XL-SIEM or Cross-Layer SIEM
2. L-ADS or Live-Anomaly Detection System

2.3.1.4.1 XL-SIEM

The objectives of a SIEM are various. Some of the most important could be the following:

• Gather and collect security events in real time

• Aggregate data from various and diverse sources

• Consolidate and correlate data

• Alert and report in concordance with regulatory compliance

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 37 of 69

Although different vendor’s SIEMs can be designed with different architectures, its purposes
are quite similar. With regard to data flow, XL-SIEM follows the following pattern:

Figure 16: Data flow for XL-SIEM

Figure 17: XL-SIEM Architecture

The SIEM is based on three components:

1) XL-SIEM Agent: responsible for the event collection, normalization and transfer to
the XL-SIEM Engine for its processing.

2) XL-SIEM Engine: running on Apache Storm, it’s responsible for the analysis and
processing of the events collected by the XL-SIEM Agents, and the generation of
alarms based on a predefined set of correlation rules or security directives.

3) XL-SIEM Dashboard: responsible for the visualization of data in the web graphical
interface (graphical charts, alarms, security events, etc.).

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 38 of 69

Besides these components, the SIEM relies on the sensors to gather information. XL-SIEM
works fine with the following sensors:

• Atos Net Tools (DNS Traffic Sensor): detection of botnets, DNS Amplification Attacks
(DoS), Brute Force Attacks

• Atos L-ADS

• Snort / Suricata (NIDS): Detection of port scanning, brute force attacks, DoS,
malware signatures in the traffic, Inspection of http traffic

• OSSEC (HIDS)

• Firewalls: NetFilter / Cisco.

• Snare (Windows): Unusual activity (brute force login attacks), Data tampering
(privilege scalation), SQL injections

• Nagios: DoS (RAM, CPU% usage, nº processes…)

• Arpwatch: Detection of changes in MACs/IPs (not suitable for DHCP)

• Honeypots: Dionaea, Conpot (Modbus)

• SCADA / Modbus Attacks

Finally, an example of XL-SIEM input, in this case from Snort, would be the following log:

(Snort raw log)

07/07-17:04:36.504799 [**] [1:2018489:3] ET SCAN NMAP OS Detection

Probe [**] [Classification: Attempted Information Leak] [Priority:

2] {UDP} 5.225.218.36:49743 -> 212.34.151.211:40560

2.3.1.4.2 L-ADS

L-ADS is the Live-Anomaly Detection System developed by ATOS. Unlike other systems,
which are based on predefined rules and patterns, L-ADS employs unsupervised machine
learning to model patterns of normal traffic and identify abnormal network behaviour of
devices based on the deviation from the normal operation model. The approach in this case
is, then, NetFlow based.

Another important feature of L-ADS is that it has been tested with real, legitimate dataset.
This approach was considered the most effective way to try the L-ADS. Results show a
promising approach using multiple features, future work will include research to reduce false
positives by incorporating more complex features.

Its architecture can be shown in Figure 18:

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 39 of 69

Figure 18: L-ADS architecture

The Anomaly Detection System can work in several different ways such as the following:

✓ clean: delete all models stored in the database.
✓ capture: store in .JSON files the NetFlow traffic received;
✓ train: generate the models and store them in the database.
✓ predict: test the models against text files.
✓ monitor: evaluate in real time the NetFlow traffic received.
✓ exit: close the application.

What data can L-ADS gather from NetFlow?

• Number or incoming/outgoing connections from, to or between servers running the
applications;

• Size of the packets sent/received;

• Duration of the connections established between servers or between clients and
servers;

• Source/destination IP addresses and ports of the connections;

• Information related to the protocol or application relevant for modelling its behaviour
(e.g., URL or function invoked by the user) recovered from the application logs
monitored.

2.3.2 Information Sources

2.3.2.1 SiVi

The following table shows SiVi’s output format:

Field Description Example

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 40 of 69

source_IP Source IP 10.0.0.2

source.Hostname Hostname of the event source. stable

source.MAC
Media Access Control (MAC) of the host for the
event, if known.

N/A

source.Port
External or internal asset source port for the
event.

0

source.LatestUpdate The last time SiVi updated the asset properties. N/A

source.UsernameDomai
n

Username and domain associated with the
asset that generated the event.

N/A

source.AssetValue
Asset value of the asset source if within your
asset inventory.

2

source.Location
If the host country of origin is known, displays
the national flag of the event source.

N/A

source.Context
If the asset belongs to a user-defined group of
entities, SiVi displays the contexts.

N/A

source.AssetGroup
When the host for the event source is an asset
belonging to one or more of your asset groups,
this field lists the asset group name or names.

N/A

source.Networks
When the host for the event source is an asset
belonging to one or more of your networks, this
field lists the networks.

Pvt_170

source.LoggedUsers

A list of any users who have been active on the
asset, as detected by the asset scan, for
example, with the username and user privilege
(such as admin).

N/A

source.OtxIPReputation
(Yes/No) Whether or not IP Reputation
identifies the IP address as suspicious.

No

source.Services_Service
List of services or applications detected on the
source port.

No services
available

source.Services_Port Port used by the service or application. -

source.Services_Protoco
l

Protocol used by the service or application. -

destination.IP Destination IP 10.0.0.5

destination.Hostname Hostname of the event destination. stable

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 41 of 69

destination.MAC
Media Access Control (MAC) of the host for the
event, if known.

N/A

destination.Port
External or internal asset destination port for the
event.

0

destination.LatestUpdate The last time SiVi updated the asset properties. N/A

destination.UsernameDo
main

Username and domain associated with the
asset that generated the event.

N/A

destination.AssetValue
Asset value of the asset destination if within
your asset inventory.

2

destination.Location
If the host country of origin is known, displays
the national flag of the event destination.

N/A

destination.Context If the asset belongs to a user-defined group of
entities, SiVi displays the contexts.

N/A

destination.AssetGroups When the host for the event destination is an
asset belonging to one or more of your asset
groups, this field lists the asset group name or
names.

N/A

destination.Networks When the host for the event destination is an
asset belonging to one or more of your
networks, this field lists the networks.

Pvt_170

destination.LoggedUsers A list of any users who have been active on the
asset, as detected by the asset scan, for
example, with the username and user privilege
(such as admin).

N/A

destination.OtxIpReputati
on

(Yes/No) Whether or not IP Reputation
identifies the IP address as suspicious.

No

destination.Services_Ser
vice

List of services or applications detected on the
destination port.

No services
available

destination.Services_Por
t

Port used by the service or application. -

destination.Services_Pro
tocol

Protocol used by the service or application. -

event.event_type_id ID assigned by SiVi to identify the event type. 5502

event.unique_event_id Unique ID number assigned to the event by
SiVi.

33b334vs-
sdvs-asdf-
335d-
22daf467

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 42 of 69

event.protocol Protocol used for the source/destination of the
event

TCP

event.category Event taxonomy for the event. Authenticatio
n

event.subcategory Subcategory of the event taxonomy type listed
under Category.

Logout

event.data_source_nam
e

Name of the external application or device that
produced the event.

HIDS-Syslog

event.data_source_id ID associated with the external application or
device that produced the event.

7001

event.product_type Product type of the event taxonomy, for
example, Operating System or Server.

Operating
System

event.additional_info Security event additional information N/A

event.priority Priority ranking based on value of the event
type. Each event type has a priority value, used
in risk calculation.

1

event.reliability Reliability ranking based on the reliability value
of the event type.

Each event type has a reliability value, which is
used in risk calculation.

1

event.risk Risk level of the event: Low = 0, Medium = 1,
High > 1

Note: Risk calculation is based on this formula:

Asset Value * Event Reliability * Event Priority /
25 = Risk

If Asset Value = 3, Reliability = 2 and Priority =
2, the risk would be 3 * 2 * 2 / 25 = 0.48 (rounded
down to 0)

4

event.otx_indicators Number of indicators associated with an IP
Reputation or OTX pulse event.

0

event.device_ip IP address of the sensor that processed the
event.

10.0.0.12

date Date and time of the event (UTC) 2020-04-04
T17:00:00

raw_log Raw log details of the event.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 43 of 69

filename *Optional - Name of file associated with the
event.

username *Optional - The username associated with the
event.

root

password *Optional - The password associated with the
event.

userdata1 *Optional - User-created log fields. /var/log/auth.l
og

userdata2 *Optional - User-created log fields. Log session
closed.

userdata3 *Optional - User-created log fields. pam, syslog

userdata4 *Optional - User-created log fields. None

userdata5 *Optional - User-created log fields.

userdata6 *Optional - User-created log fields.

userdata7 *Optional - User-created log fields.

userdata8 *Optional - User-created log fields.

event.event_type_id ID assigned by SiVi to identify the event type. 5502

event.unique_event_id Unique ID number assigned to the event by
SiVi.

33b334vs-
sdvs-asdf-
335d-
22daf467

event.protocol Protocol used for the source/destination of the
event

TCP

event.category Event taxonomy for the event. Authenticatio
n

Table 4: Output format of SiVi

2.3.2.2 Encrypted Network Traffic Analysis

FORTH’s Encrypted Network Analysis Tool produced an output which was extracted with
the help of Graylog. Provided log was a CSV file which needed some processing. Raw log
looks like:

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 44 of 69

Figure 19: Raw log of Encrypted Network Analysis Tool

After some handling of the data, the format could be expressed in a more readable way:

Figure 20: Raw log formatted

The following table shows an example of the output of Encrypted Network Analysis Tool
once it has been processed:

Field Example

timestamp 2020-10-05T14:54:42.000Z

source SRV110

event_date 05/10/2020 16:54

event_id b3eb79bb-071a-11eb-9dcd-ceb1b9f60895

event_ingested 2020-10-05T14:54:42.000Z

event_kind BehaviourBlockEvent

event_module Antivirus

event_outcome Blocked

event_severity 2

event_timezone Europe/Madrid

file_device _

file_path HKLM\SOFTWARE\MCAFEE\SYSTEMCORE\VSCORE\NVP\

host_architecture Windows 2003 R2

host_hostname LUBCS3

host_ip 172.22.3.3

host_mac 00505681ce2b

Message

<?xml version="1.0" encoding="UTF-8"?>

<BehaviourBlockEvent><MachineInfo>

<MachineName>LUBCS3</MachineName><AgentGUID>{df28668e-6205-11ea-0ca1-
00505681ce2b}</AgentGUID>

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 45 of 69

<IPAddress>172.22.3.3</IPAddress><OSName>Windows 2003
R2</OSName><UserName>NT AUTHORITY\SYSTEM</UserName><TimeZoneBias>-
120</TimeZoneBias>

<RawMACAddress>00505681ce2b</RawMACAddress>

<ScannerSoftware ProductName="VirusScan Enterprise" ProductVersion="8.8"
ProductFamily="TVD">

<EngineVersion>0</EngineVersion>

<DATVersion>0</DATVersion>

<ScannerType>OAS</ScannerType><TaskName>OAS</TaskName>

<ProductFamily>TVD</ProductFamily>

<ProductName>VirusScan Enterprise</ProductName>

<ProductVersion>8.8</ProductVersion>

<BlockedBehaviourInfo><EventID>1092</EventID><Severity>2</Severity>

<GMTTime>2020-10-05T16:54:42</GMTTime>

<UTCTime>2020-10-05T14:54:42</UTCTime>

<RuleName>ProtecciÃ³n comÃºn estÃ¡ndar:Impedir la modificaciÃ³n de los archivos y las
opciones de McAfee</RuleName>

<ProcessName>C:\ARCHIVOS DE
PROGRAMA\MCAFEE\AGENT\MACOMPATSVC.EXE</ProcessName>

<FileName>HKLM\SOFTWARE\MCAFEE\SYSTEMCORE\VSCORE\NVP\</FileName>

<Source>_</Source>

<ActionsBlocked>5</ActionsBlocked>

<szActionsBlocked>Escritura</szActionsBlocked>

</BlockedBehaviourInfo></ScannerSoftware></BehaviourBlockEvent>#015

Observer_product VirusScan Enterprise

Observer_type Antivirus

Observer_vendor TVD

Organization_id TEST

Organization_name TEST

User_name NT AUTHORITY\SYSTEM

Table 5: Encrypted Network Analysis Tool output format

2.3.2.3 GLORIA

The following table sums up the proposed output format of GLORIA:

ECS field Description

@timestamp Date of detection in origin

agent_name Custom name of agent

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 46 of 69

agent_type Type of agent

destination_geo_city_name Destination city name

destination_geo_country_iso_code Destination country code

destination_geo_country_name Destination country name

destination_ip Destination IP for the connection

destination_port Port of the destination

event_action Action captured by the event

event_category One of four ECS Categorization fields

event_ingested Date when event was received

event_dataset Name of the dataset

event_end Date when event ended or activity was last observed

event_kind
High-level information of what type of data the event
contains

event_module Name of the module data is coming from

event_original Original message description

event_outcome
Success or failure from the perspective of the entity that
produced the event

event_severity Numeric severity of the event according to event source

event_start
Date when the event started or when the activity was first
observed

event_timezone
Time zone of the event (if not included in the timestamp)
of device source of the alert

file_device Device where file is located

file_hash_md5 MD5 hash of file

file_hash_sha256 SHA256 hash of file

file_name Name of the file (including extension) without the directory

file_path Path of the file

file_size Size of the file (bytes)

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 47 of 69

host_geo_city_name City name (of host)

host_geo_country_iso_code Code of the country where host is located

host_geo_country_name Country name

host_group_name Group to which host belongs

host_hostname Hostname of the host where alert is produced

host_ip IP address of host where alert is produced

http_request_body_content Full HTTP request body

message Raw text message of entire event

network_transport A name given to an application level protocol

observer_ip IP address of the device that produces the alert

observer_name Name of device which produces the alert

observer_product Product model which generates the alert

observer_type Kind of device which produces the alert

observer_vendor Vendor of the device which produces the alert

organization_id Unique ID for the organization client

organization_name Organization name

process_args Parameters received by a process being executed

process_executable Name of executable

process_hash_md5 MD5 hash of executable file

process_hash_sha256 SHA256 of executable file

server_domain FQDN name of server

source_geo_city_name Name of city of origin

source_geo_country_iso_code Code of country source of connection

source_geo_country_name Name of country source of connection

source_hostname Name of source of connection

source_ip IP address of the source of the connection (IPv4 or IPv6)

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 48 of 69

source_port Port of source of connection

threat_framework
Name of threat framework used to classify or categorize
the threat

rule_id ID or code established by signature manufacturer

rule_name Signature established by manufacturer

url_full URL of HTTP request

user_domain Windows domain of the user

user_group_name Name of the group to which the user belongs

user_name Short name or login of the user

Table 6: Output format of GLORIA

2.3.2.4 XL-SIEM

The SIEM of ATOS produces the following output:

Field Description

Backlog_ID Backlog Identificator

Category Category of the event

Date Date when event was produced or detected

Device Device affected by the event

DST_IP Destination IP

DST_IP_Hostname Destination IP hostname

DST_Port Puerto de destino

Event_ID Event identification

Filename Name of file related to the incident

Interface Interface through which the event was detected

Log Raw log of event

Organization Name of organization engaged in detecting the event

Password

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 49 of 69

Plugin_ID Identification of the plugin which detected the event

Plugin_name Name of the plugin that detected the event

Priority Numeric priority of the event

Protocol Protocol related to the event

Related_events List of related events (if applicable)

Reliability Numeric estimate of reliability of event detection

Risk Numeric estimate of risk associated to event

SRC_IP Source IP address

SRC_IP_Hostname Source IP hostname

SRC_Port Source port

Subcategory Description of subcategory of event

Userdata1 *Optional

Userdata2 *Optional

Userdata3 *Optional

Userdata4 *Optional

Userdata5 *Optional

Userdata6 *Optional

Userdata7 *Optional

Userdata8 *Optional

Userdata9 *Optional

Table 7 - Output format of XL-SIEM

The format itself presents different event security information fields which must be filtered
and normalized before mapping. First process is to translate the output to a more readable
format:

Figure 21: Separate fields in output of XL-SIEM

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 50 of 69

It will be necessary to transpose fields to filter and know what could be discarded:

Figure 22: Final transformation of output of XL-SIEM

Once these steps have been completed, log is ready for the mapping procedure.

2.4 Overview of Architecture

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 51 of 69

2.4.1 Introduction

CyberSANE project makes use of several tools from very different manufacturers. Each one
has its own set of characteristics and has been designed to accomplish a concrete mission
with regard to event information gathering. Because of that, when comparing devices
involved on monitoring tasks, information obtained may vary significantly from one device to
another.

After careful considerations, it was decided that the best approach to follow would be to
normalize all incoming logs to a recognizable, standard output. This normalized output can
then be handled with less effort, due to the fact that it has been previously filtered and
adapted. For that purpose, it is important to first define the necessary architecture, that is,
how inputs are going to be integrated in the CyberSANE platform.

2.4.2 Elastic Common Schema as standard output

No matter what kind of operation we may be performing (cyber threat intelligence, operation
analytics, etc.) it is quite common to gather data from different sources and devices.

Elastic Common Schema or ECS30 is an open source specification and framework which
defines a common set of fields to store event data. This common data model implies a big
advantage when trying to correlate data. Although one of its main objectives is to be
integrated with ElasticSearch, its versatility as a highly customizable set of fields makes it
quite suitable to be employed for other purposes. Therefore, ECS can be adapted to map
any security event or log, no matter what source has produced it. ECS proposes different
groups of fields called “field sets”. These categories can be used at will. Field sets are
available online31.

With the advantage of being open source, this framework for data modelling can be used
for free. While some people might expect it to be installed and running as a standalone
component, the idea behind the project is more about being a guideline to achieve data
normalization from different sources. ECS proposes a framework flexible to accept whatever
input might be necessary. An important nuance is that ECS makes no modification on the
original data. Another strength of ECS is about its integration with ElasticSearch, which
comes naturally. Therefore, it is possible to retrieve information, engage with dashboards
and queries or drop to a more granular view in a few clicks. Correlation of data and
collaboration between partners require little effort thanks to ECS, given its powerful
capabilities when adapting to different kinds of inputs produced by vendors or devices.

Last but not least, ECS can take advantage of machine learning. It is possible to create jobs
just by means of the Elastic Stack and store results into ElasticSearch. Handling operations
such as filtering, sorting or correlating anomalies are no longer painful because of the way
ECS links security event information.

30 https://www.elastic.co/guide/en/ecs/current/index.html
31 https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html

https://www.elastic.co/guide/en/ecs/current/index.html
https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 52 of 69

2.4.3 Normalization and transformation of event information into unified
format

Normalization and transformation operations are performed with one clear purpose:
homogenise data. When working with different sources, vendors or providers, information
can adopt different ways and come into distinct formats. However, the best way to make the
most of it is by means of putting all the pieces together. Normalization can assist in this
process, enabling to care for just one standard format. Simplification is key for a fast answer
when dealing with a security event.

According to what Elastic indicates, a good way to fit into ECS format should include the
following steps:

1. Review of fields in the original source. The idea would be to understand what
information is provided in each log.

2. Filter and discard what is not necessary.
3. Define a final ECS output version to which all inputs should reasonably map.
4. Map events to the relevant ECS Core or Extended field.
5. Review all remaining information with the objective of trying to populate as many

ECS fields as possible. Different field sets can help with this task.
6. Refinement.

2.4.3.1 Filter (Reducing irrelevant information)

First thing to do before normalizing or transforming data is to filter it. Usually, logs provide a
lot of information but not everything is needed. Therefore, it is always advisable to get rid of
data to spare. Filtering has a double-side beneficious effect:

1. It reduces complexity by avoiding non necessary information to be processed.
2. It helps saving time as there is no need to process every single piece of

information provided by the logs.

Additionally, filtering makes subsequent stages more manageable: by means of reducing
the amount of information to be processed it is quite possible to be focused on what matters.

With regard to CyberSANE, first step is to understand what information is provided by each
one of the inputs. It was performed a review of fields from each one of the original sources,
to grasp what might come in the log. This entails a big importance, since every device
acquiring data will gather different kind of fields. Once this is completed, filtering can be
performed:

• Input provided by GLORIA is quite similar to the standard ECS output format.
GLORIA already proposes an ECS format style to store data. Only thing which
remained to be done was to check what fields were being used to verify there was
no important information missing.

• Input of SiVi provides various fields which need some mapping. For instance,
information such as reliability or asset groups was not easily mapped with the ECS
format. But, more importantly, some optional fields such as password (associated
with the event) or userdata field can be discarded without hesitation.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 53 of 69

• FORTH’s Encrypted Network Traffic Analysis Tool provided a more straightforward
log. In this case the point was not about filtering but making sure there was enough
information. Log of device lacks some information about destination, but it comes
fully provisioned as far as event fields are concerned.

• With regard to XL-SIEM of ATOS, it provides data about several of the most
important event fields such as host hostname, interface, device, sensor, source IP
and port or username. However, it is difficult to map some of the ECS event fields to
the log provided.

2.4.3.2 Output format proposal

One of the biggest advantages of ECS is the enormous possibility of customization it
provides. Therefore, output format can be designed to fulfil any specific need. After
understanding what information does every one of the partners provide, it has been easier
to know the most important fields to be considered for the output. Minimum output proposal
should include the following information:

• Time when the event took place. A timestamp would be enough, better if it includes
timezone.

• Information about both source and destination of the attack: IP address, hostname,
MAC address (if available)

• Identification of the event.

• Severity of the event.

• Information about what device processed the event or produced the alert.

• Result of the alert (block, false positive, etc.)

• Name of the user associated with the event (if any).

• Any other information of interest such as rule that was triggered, protocol or
organization name.

All this information is compiled in the following proposed ECS fields:

Field Description

@Timestamp Date of detection in origin

destination.ip Destination IP for the connection

destination.port Port of the destination

event.action Action captured by the event

event.category Taxonomy of the event

event.end Date when the event ended or when the activity was last observed

event.id Unique ID to describe the event

event.outcome Success or a failure from the perspective of the entity that produced the
event

event.severity The numeric severity of the event according to your event source

event.timezone Event's time zone (if not included in the timestamp) of device source of
alert

event.type Represents a categorization "sub-bucket", i.e., subcategory of event
taxonomy

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 54 of 69

file.name Name of the file associated with the event including the extension,
without the directory

file.path Path of the file

host.hostname Hostname of the host (where alert is produced)

host.ip Host IP address (IP of host where alert is produced)

host.mac Host mac addresses

message Raw text message of entire event (raw of log)

network.transport A name given to an application level protocol (Protocol used for
source/destination)

observer.ip IP address of device which produces alert

observer.name Name of device which produces alert

observer.type Kind of device which produces the alert

organization.id Unique identifier for the organization (client)

rule.name Signature established by manufacturer / Rule used to detect the event

source.hostname Name of source of connection

source.ip IP address of the source (of the connection) (IPv4 or IPv6)

source.mac MAC address of the source (of the connection)

source.port Port of the source

user.domain (Windows) domain of the user

user.name Short name or login of the user

Table 8: Output format proposal

2.4.3.3 Map and transform (Change the formats)

Mapping is the process of making an input fit into an output. This process has different levels
of complexity depending on how far input and output are. The more similar they are, the less
work is to be done. However, when input organization differs from output’s one, some
operations are needed, and these may entail some complexity.

According to what was stated in the filtering stage, output of GLORIA poses the least
difficulty to be mapped, given that the format is the same to the proposed output format
(ECS in both cases). For the other logs, some transformation is needed to adapt what comes
to output proposed format.

Mapping is a process done on two sides:

i. Manual: the analyst designs how an input field should match to the corresponding
output one, that is, what is the best output matching for every input. This step
should be improved with several iterations to populate as many output fields in
the most accurate way as possible. Each iteration should deliver more fields
populated.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 55 of 69

ii. Automatic: it would be necessary to define some pipelines to perform the
transformation in an automatized way. The main problem will be that any input
will need its own, custom pipeline to be transformed into a suitable output.

2.4.3.4 Review and refinement

The last step of the normalization process would be a review and refinement of the mapping.
The purpose is that the analyst verifies whether there are some input fields that are not
matching properly so he can make the proper adjustments. Sometimes two input fields could
be matched with a particular output field. The objective of refinement is to review these
situations and try to resolve them to achieve the most accurate result possible. Refinement
seeks to reduce mapping errors as well as any doubtful situation it may arise.

It is important to bear in mind that in most of the situations, the process of mapping will not
be 100% accurate, this should happen only if the same format is used in both origin and
destination and, then, mapping would not be necessary. Only through time, dedication and
expertise the analyst will be capable of matching source log to destination accurately.

2.4.4 Architecture proposal

The purpose of the system will essentially be to transform various inputs into a standard
output. There are several ways to achieve this objective. In this case, architecture of the
system proposed was thought to be as simple as possible while capable of meeting the
requirements. It will be necessary to have, at least, some components:

1. First component should contain various plugins. Plugins are the best way to read the
input and accept different kinds of logs. Its main function is just to accommodate to
whatever is provided. It is essential that the component is scalable, that is, accept
new plugins if needed. The idea is to make the architecture to easily accept new log
formats in case these are provided.

2. Transformation and normalization component. Normally, pipelines are the
mechanism in charge of providing a standard output. They work similar to funnels
and make use of some normalization techniques to adapt what comes from the tools
to the proposed standard output format:

a. Filtering input, i.e., discarding what may not be necessary.
b. Mapping, that is, matching input fields to the correspondent field in ECS

format.

It would be desirable that all components are integrated in a single module. Although each
component is responsible for its own duties, having a single module may help to simplify,
especially in terms of avoiding unnecessary communications between modules.

As previously stated, output format will be ECS. Thus, it must not be forgotten that it would
be possible to bring information to ElasticSearch if needed.

2.4.5 Sequence diagram

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 56 of 69

Sequence diagram groups in a visual manner the way the architecture should behave.
Figure 24 shows the sequence diagram:

Figure 23 - Sequence diagram

The most important things about sequence diagram are summed up in the following points:

• Plugin components are expected to accept raw logs from different devices. Plugins
are designed to deal with different manufacturers and inputs. Architecture can be
escalated just by adding whatever plugins may be necessary.

• Pipelines do the hard work of filtering logs, discarding whatever may be unnecessary
and, finally, mapping to the selected ECS output format. Once the data has been
given appropriate treatment, it is sent to the CyberSANE platform.

• CyberSANE will have all information standardized to ECS format. This will make
easier to handle the data and provide new possibilities, such as providing information
to ElasticSearch. ElasticSearch is one of the best ways to display complex
information just with little effort.

2.4.6 Normalization and data transformation incident-related examples

2.4.6.1 Example 1 – Mapping GLORIA to ECS

In this example mapping between output of GLORIA to ECS format is going to be explained
in detail. The advantage here is that GLORIA already provides a log in ECS.

An example of the output provided by GLORIA would be the following raw log:

@timestamp timestamp=1580908637.837166

destination_ip dst=208.67.222.222:XX

destination_port dst=x.x.x.x:53

event_dataset security_event

event_module IPS

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 57 of 69

event_severity priority=3

host_hostname shost=0C:8D:DB:65:98:85

message

1580908637.931867289 IN_Dubai_MX84 security_event ids_alerted
signature=1:28039:7 priority=3 timestamp=1580908637.837166
shost=0C:8D:DB:65:98:85 direction=egress protocol=udp/ip
src=10.233.92.4:47303 dst=208.67.222.222:53 message:
INDICATOR-COMPROMISE Suspicious .pw dns query

network_transport protocol=udp/ip

observer_name IN_Dubai_MX84

observer_product Threat Protection

observer_type Meraki

observer_vendor Cisco

organization_name Innovasjon Norge

source_ip src=10.233.92.4:XXXX

source_port src=X.X.X.X:47303

rule_id signature=1:28039:7

rule_name message: INDICATOR-COMPROMISE Suspicious .pw dns query

Table 9: Example of output of GLORIA

As the table shows, some of the ECS outputs are populated with security event information.
For the time being, it is possible to know:

• Time and data when the event took place.

• Severity of the event.

• Source IP and port.

• Destination IP and port.

• MAC address of the host affected.

• Details of the product raising the alert.

• ID and name of the rule raised by the event.

Besides, GLORIA provides raw log of the event (see message field in the table). Once the
input is in ECS format, it is easy to map with the expected output:

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 58 of 69

Figure 24: Example of mapping of output

2.4.6.2 Example 2 – Mapping SiVi to ECS

In this example the transformation of the output format of SiVi into the ECS will be presented
in details. A log of SiVi has the following format:

Proposed Fields SiVi Fields SiVi Field Example

@Timestamp date 2020-04-04 T17:00:00

destination.ip destination.IP 10.0.0.5

destination.port destination.Port 5000

event.action - -

event.category event.category Authentication

event.end - -

event.id event.unique_event_id 33b334vs-sdvs-asdf-335d-22daf467

event.outcome - -

event.severity event.risk 4

event.timezone - -

event.type event.subcategory Logout

file.name filename

file.path - -

host.hostname source.Hostname stable

host.ip event.device_ip 10.0.0.2

host.mac source.MAC 00:1B:33:11:3B:A4

message raw_log

network.transport event.protocol TCP

observer.ip event.device_ip 10.0.0.12

observer.name event.data_source_name HIDS-Syslog

Matching

@timestamp timestamp=1580908637.837166 @Timestamp Date of detection in origin timestamp=1580908637.837166

destination.ip dst=208.67.222.222:XX destination.ip Destination IP for the connection dst=208.67.222.222:XX

destination.port dst=x.x.x.x:53 destination.port Port of the destination dst=x.x.x.x:53

event.dataset security_event event.action Action captured by the event #N/A

event.module IPS event.category Taxonomy of the event #N/A

event.severity priority=3 event.end Date when the event ended or when the activity was last observed #N/A

host.hostname shost=0C:8D:DB:65:98:85 event.id Unique ID to describe the event #N/A

message 1580908637.931867289 IN_Dubai_MX84 security_event ids_alerted signature=1:28039:7 priority=3 timestamp=1580908637.837166 shost=0C:8D:DB:65:98:85 direction=egress protocol=udp/ip src=10.233.92.4:47303 dst=208.67.222.222:53 message: INDICATOR-COMPROMISE Suspicious .pw dns queryevent.outcome Success or a failure from the perspective of the entity that produced the event #N/A

network.transport protocol=udp/ip event.severity The numeric severity of the event according to your event source priority=3

observer.name IN_Dubai_MX84 event.timezone Event's timezone (if not included in the timestamp) of device source of alert #N/A

observer.product Threat Protection event.type Represents a categorization "sub-bucket", i.e., subcategory of event taxonomy (SiVi) #N/A

observer.type Meraki file.name Name of the file associated with the event including the extension, without the directory #N/A

observer.vendor Cisco file.path Path of the file #N/A

organization.name Innovasjon Norge host.hostname Hostname of the host (where alert is produced) shost=0C:8D:DB:65:98:85

source.ip src=10.233.92.4:XXXX host.ip Host IP address (IP of host where alert is produced) #N/A

source.port src=X.X.X.X:47303 host.mac Host MAC addresses #N/A

rule.id signature=1:28039:7 message Raw text message of entire event (raw of log) 1580908637.931867289 IN_Dubai_MX84 security_event ids_alerted signature=1:28039:7 priority=3 timestamp=1580908637.837166 shost=0C:8D:DB:65:98:85 direction=egress protocol=udp/ip src=10.233.92.4:47303 dst=208.67.222.222:53 message: INDICATOR-COMPROMISE Suspicious .pw dns query

rule.name message: INDICATOR-COMPROMISE Suspicious .pw dns query network.transport A name given to an application level protocol (Protocol used for source/destination) protocol=udp/ip

observer.ip IP address of device which produces alert #N/A

observer.name Name of device which produces alert IN_Dubai_MX84

observer.type Kind of device which produces the alert Meraki

organization.id Unique identifier for the organization (client) #N/A

rule.name Signature established by manufacturer / Rule used to detect the event (SiVi) message: INDICATOR-COMPROMISE Suspicious .pw dns query

source.hostname Name of source of connection #N/A

source.ip IP address of the source (of the connection) (IPv4 or IPv6) src=10.233.92.4:XXXX

source.mac MAC address of the source (of the connection) #N/A

source.port Port of the source src=X.X.X.X:47303

user.domain (Windows) domain of the user #N/A

user.name Short name or login of the user #N/A

Expected outputInput

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 59 of 69

observer.type - -

organization.id - -

rule.name - -

source.hostname source.Hostname stable

source.ip source.IP 10.0.0.2

source.mac source.MAC 00:1B:33:11:3B:A4

source.port source.Port 4999

user.domain - -

user.name username root

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 60 of 69

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 61 of 69

Chapter 3 Summary and Conclusion

3.1 Intrusion detection in encrypted network traffic

With the advent and rapid adoption of network encryption mechanisms, typical deep packet
inspection systems that monitor network packet payload contents are becoming less
effective. Advancing intrusion detection tools to be also effective in encrypted networks is
crucial. In the context of Task 3.3, FORTH examines the state-of-the-art in encrypted traffic
analysis and proposes a methodology to automatically mine signatures for intrusion
detection in encrypted networks. More specifically, FORTH:

• Reviews the state-of-the-art in the domain of encrypted traffic analysis for intrusion
detection.

• Generates a ground-truth dataset with network traces that contain malicious
activity.

• Processes the collected network traces and infers the most prevalent features
contained in network packet headers.

• Analyses the exported data.

• Employs an algorithm for discovering sequential sequences of packet metadata
inside a network flow.

• Concludes on a representation format and proposes a simple and mineable
signature language.

• Extends the implementation of a deep packet inspection engine to support
signatures for encrypted traffic.

3.2 Advantages of data normalization

As it has been described in this document, working with various sources can be quite
challenging. So, when dealing with different kinds of inputs and formats, normalization
becomes a necessity. The fact that solutions from several manufacturers are involved in the
CyberSANE solution provides data which has to be standardized if is going to be exploited.
Data normalization has helped through the process of standardization in several ways:

✓ Detaching what is necessary from what is dispensable, that is, reducing the amount
of data to be processed and, therefore, time required.

✓ Funnelling data to the output.
✓ Producing an expected, structured output.
✓ Avoiding confusion and disruption with regard to data treatment.

However, sometimes normalization process is neither easy nor straightforward. Its
complexity can be quite changeable because it is based on how the input arrives. Analysts
need to devote some time on adjusting the way conversion must be done, typically by means
on relying on the proper pipelines to do the hard work.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 62 of 69

3.3 Architecture and ECS

A proper, conceived architecture should be the backbone of any project, and data
normalization is no different in this point. It is essential to think carefully and design a solid
architecture to make the most of data normalization.

As per the proposed architecture, the objectives had a double-side perspective:

1. Fulfil requirements of incident information normalization for every one of the sources
involved in the process of data gathering.

2. Keep architecture as simple as possible and try to avoid unnecessary complexity.

When designing the architecture, these two goals have been kept in mind permanently. As
per the results obtained, the objectives have been achieved.

With regard to Elastic Common Schema, choosing ECS as the standard output format was
easy: a free framework for data modelling which is flexible, powerful enough and
customizable. ECS provides versatility to keep things simple but, at the same time, fits with
different input formats while allowing an easy mapping. It is always advisable to turn to free
components which are, frequently, quite configurable and useful and provide no fewer
functionality compared to the privative ones.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 63 of 69

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 64 of 69

Chapter 4 List of Abbreviations

Abbreviation Translation

Adversary TTP Adversary Tactics, Techniques and Procedures

APT Advanced Persistent Threat

ASIC Application-Specific Integrated Circuit

CEF Common Event Format

CSIRT Computer Security Incident Response Team

DDoS Distributed Denial of Service

ECS Elastic Common Schema

FPGA Field-Programmable Gate Array

IDS Intrusion Detection System

IODEF Incident Object Description Exchange Format

IRT Incident Response Team

OSSEC Open Source HIDS SECurity

SDN Software Defined Network

SIEM Security Information and Event Management

STIX Structured Threat Information eXpression

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 65 of 69

TCAM Ternary Content Addressable Memory

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 66 of 69

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 67 of 69

Chapter 5 Bibliography

[1]. Aho, Alfred V. and Margaret J. Corasick. "Efficient string matching: an aid to
bibliographic search." Communications of the ACM 18.6 (1975): 333-340.

[2]. Anderson, Blake and David McGrew. "Machine learning for encrypted malware traffic
classification: accounting for noisy labels and non-stationarity." Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2017. 1723–1732.

[3]. Conti, Mauro, et al. "Can’t you hear me knocking: Identification of user actions on
android apps via traffic analysis." Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy. ACM, n.d. 297-304.

[4]. Fournier-Viger, Philippe, et al. "VMSP: Efficient vertical mining of maximal sequential
patterns." Canadian conference on artificial intelligence. . Springer, n.d. 83–94.

[5]. Papadogiannaki, Eva, Dimitris Deyannis and and Sotiris Ioannidis. "Head (er) Hunter:
Fast Intrusion Detection using Packet Metadata Signatures." 2020 IEEE 25th
International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD). IEEE, 2020. 1-6.

[6]. Papadogiannaki, Eva, et al. "OTTer: A Scalable High-Resolution Encrypted Traffic
Identification Engine." nternational Symposium on Research in Attacks, Intrusions,
and Defenses. (RAID). Springer, 2018. 315–334.

[7]. Shen, Jie, et al. "Performance Traps in OpenCL for CPUs." Proceedings of the 2013
21st Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. 2013.

[8]. Dobrescu, Mihai, et al. "RouteBricks: Exploiting Parallelism to Scale Software
Routers." 22nd ACM Symposium on Operating Systems Principles. 2009.

[9]. Han, Sangjin, et al. "PacketShader: a GPU-accelerated software router. ."
Proceedings of SIGCOMM. 2010.

[10]. Papadogiannaki, Eva, et al. "Efficient software packet processing on heterogeneous
and asymmetric hardware architectures." IEEE/ACM Transactions on Networking 25
(2017): 1593–1606.

[11]. Vasiliadis, Giorgos, Michalis Polychronakis and Sotiris Ioannidis. "MIDeA: A Multi-
Parallel Intrusion Detection Architecture." Proceedings of the 18th ACM Conference
on Computer and Communications Security. ACM, 2011.

[12]. Fournier-Viger, Philippe, et al. "Fast vertical mining of sequential patterns using
cooccurrence information." Pacific-Asia Conference on Knowledge Dis- covery and
Data Mining. Springer, 2014.

[13]. Rizzo, Luigi, Marta Carbone and and Gaetano Catalli. "Transparent acceleration of
software packet forwarding using netmap." 2012 Proceedings IEEE INFOCOM. IEEE,
2012. 2471–2479.

[14]. Lotfollahi, Mohammad, et al. "Deep packet: A novel approach for encrypted traffic
classification using deep learning." Soft Computing (2017): 1-14.

[15]. Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, and Tevfik Bultan. n.d.
[16]. Rosner, Nicolás, et al. "Profit: Detecting and Quantifying Side Channels in Networked

Applications." NDSS. 2019.
[17]. Vasiliadis, Giorgos, et al. "Gnort: High Performance Network Intrusion Detection Using

Graphics Processors." Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection. 2008.

[18]. Paxson, Vern, Robin Sommer and Nicholas Weaver. "An architecture for exploiting
multi-core processors to parallelize network intrusion prevention." 2007 IEEE Sarnoff
Symposium. IEEE, 2007. 1-7.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 68 of 69

[19]. Vallentin, Matthias, et al. "The NIDS cluster: Scalable, stateful network intrusion
detection on commodity hardware." International Workshop on Recent Advances in
Intrusion Detection. Springer, 2007. 107–126.

[20]. Meiners, Chad R, et al. "Fast regular expression matching using small TCAMs for
network intrusion detection and prevention systems." Proceedings of the 19th USENIX
conference on Security. USENIX Association, 2010.

[21]. Sourdis, Ioannis and Dionisios Pnevmatikatos. "Pre-decoded CAMs for efficient and
high-speed NIDS pattern matching." 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines. IEEE, 2004. 258–267.

[22]. Sherry, Justine, et al. "Blindbox: Deep packet inspection over encrypted traffic." ACM
SIGCOMM Computer communication review 45, 4 2015: 213–226.

[23]. Ning, Jianting, et al. "PrivDPI: Privacy-Preserving Encrypted Traffic Inspection with
Reusable Obfuscated Rules." Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, n.d. 1657–1670.

[24]. Shone, Nathan, et al. "A deep learning approach to network intrusion detection." IEEE
Transactions on Emerging Topics in Computational Intelligence 2, 1 (2018): 41–50.

[25]. Tang, Tuan A, et al. "Deep learning approach for network intrusion detection in
software defined networking." 016 International Con- ference on Wireless Networks
and Mobile Communications (WINCOM). IEEE, 2016. 258–263.

[26]. Niyaz, Quamar, Weiqing Sun and Ahmad Y Javaid. "A deep learning based DDoS
detection system in software-defined networking." arXiv preprint arXiv:1611.07400 .
2016.

[27]. Amoli, ayam Vahdani, et al. "Unsupervised network intrusion detection systems for
zero-day fast-spreading attacks and botnets." International Journal of Digital Content
Technology and its Applications 10, 2 (2016): 1–13.

[28]. Mirsky, Y., et al. "Kitsune: an ensemble of autoencoders for online network intrusion
detection." 2018.

[29]. Conti, Mauro, et al. "Analyzing android encrypted network traffic to identify user
actions. ." EEE Transactions on Information Forensics and Security 11, 1 (2016): 114–
125.

[30]. Taylor, Vincent F, et al. "Robust smartphone app identification via encrypted network
traffic analysis. ." EEE Transactions on Information Forensics and Security 13, 1
(2017) (2017): 63-78.

[31]. Orsolic, Irena, et al. "Youtube QoE estimation based on the analysis of encrypted net-
work traffic using machine learning." IEEE Globecom Workshops (GC Wkshps). IEEE,
2016. 1–6.

[32]. Mazha, M Hammad and Zubair Shafiq. "Real-time video quality of experience
monitoring for https and quic." IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. 2018. 1331–1339.

[33]. Xu, Shichang, Subhabrata Sen and Z Morley Mao. "CSI: inferring mobile ABR video
adaptation behavior under HTTPS and QUIC." Proceedings of the Fifteenth European
Conference on Computer Systems. 2020. 1-16.

[34]. Khokhar, Muhammad Jawad, Thibaut Ehlinger and Chadi Barakat. "From Network
Traffic Measurements to QoE for Internet Video." 2019 IFIP Networking Conference
(IFIP Networking). IEEE, 2019. 1-9.

[35]. Ghiëtte, Vincent, Harm Griffioen and Christian Doerr. "Fingerprinting tooling used for
{SSH} compromisation attempts. ." 22nd International Symposium on Research in
Attacks, Intrusions and Defenses ({RAID} 2019). 2019. 61-71.

[36]. Goh, Vik Tor, Jacob Zimmermann and MarkLooi. "Experimenting with an intrusion
detection system for encrypted networks." International Journal of Business
Intelligence and Data Mining 5, 2 (2010): 172–191.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 69 of 69

[37]. Goh, Vik Tor, Jacob Zimmermann and Mark Looi. "Intrusion detection system for
encrypted networks using secret-sharing schemes." International Journal of
Cryptology Research (2010). (2010).

[38]. Abbas Razaghpanah, Narseo Vallina-Rodriguez, et al. "Haystack: In situ mobile traffic
analysis in user space." 2015.

[39]. Kotzias, Platon, et al. "Coming of age: A longitudinal study of tls deployment."
Proceedings of the Internet Measurement Conference 2018. 2018. 415–428.

[40]. Zhai, Ennan, et al. "AnonRep: Towards Tracking-Resistant Anonymous Reputation."
NSDI. 2016. 583–596.

[41]. Chen, Chen, et al. "TARANET: Traffic-Analysis Resistant Anonymity at the NETwork
layer." 2018.

[42]. Frolov, Sergey and Eric Wustrow. "The use of TLS in Censorship Circumvention."
NDSS. 2019.

[43]. Wang, Tao and Ian Goldberg. "Walkie-talkie: An efficient defense against passive
website fingerprinting attacks." 26th {USENIX} Security Symposium ({USENIX }
Security 17). USENIX Association, 2017. 1375–1390.

[44]. Hooff, Jelle Van Den, et al. "Vuvuzela: Scalable private messaging resistant to traffic
analysis." Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015. 137–152.

[45]. Kwon, Albert, et al. "Atom: Horizontally scaling strong anonymity. ." Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017. 406–422

[46]. Common Event Format, ldapwiki. Available online:
https://ldapwiki.com/wiki/Common%20Event%20Format.

[47]. CEF - Event Interoperability Standards. Artificial Intelligence and Big Data in Cyber
Security. Available online: https://raffy.ch/blog/2007/07/18/cee-cef-event-
interoperability-standards/

[48]. Understanding the Syslog - Common Event Format (CEF) forwarder mappings in
ICDx. Available online:
https://help.symantec.com/cs/ICDX_1.4/ICDX/v131903235_v133742888/Understand
ing-the-Syslog-Common-Event-Format-(CEF)-forwarder-mappings-in-
ICDx?locale=EN_US

[49]. Common Event Format (CEF) Logging Support in the Application Firewall. Available
online: https://support.citrix.com/article/CTX136146

[50]. HPE SecurityArcSightCommon EventFormat. Available online:
https://www.secef.net/wp-
content/uploads/sites/10/2017/04/CommonEventFormatv23.pdf

[51]. Structured Threat Information eXpression — STIX™A Structured Language for Cyber
Threat Intelligence Information. Available online:
https://makingsecuritymeasurable.mitre.org/docs/stix-intro-handout.pdf

[52]. What is STIX. Available online: https://searchsecurity.techtarget.com/definition/STIX-
Structured-Threat-Information-eXpression

[53]. The Incident Object Description Exchange Format. Available online:
https://tools.ietf.org/html/rfc5070#section-1

[54]. Elastic Common Schema – talking the same data language. Available online:
https://www.siscale.com/elastic-common-schema-talking-the-same-data-language/

[55]. Aleroud, A. & Karabatis, G., 2013. Toward zero-day attack identification using linear
data transformation techniques. Gaithersburg, Maryland, IEEE, pp. 159-168.

[56]. Almeida, J. F., Barbi, M. & do Vale, M., 2000. A proposal for a different chi-square
function for Poisson distributions. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 449(1-2), pp. 383-395.

[57]. Alom, M. & Taha, T., 2017. Network intrusion detection for cyber security using
unsupervised deep learning approaches. Dayton, Ohio, IEEE, pp. 63-69.

D3.2 - Encrypted Network Traffic Analysis, Transformation and Normalization Techniques

CyberSANE D3.2 Page 70 of 69

[58]. Al-Rowaily, K., Abulaish, M., Haldar, N. & Al-Rubaian, M., 2015. BiSAL–A bilingual
sentiment analysis lexicon to analyze Dark Web forums for cyber security. Digital
Investigation, Volume 14, pp. 53-62.

[59]. Bartlett, M., 1936. The square root transformation in analysis of variance. Supplement
to the Journal of the Royal Statistical Society, 3(1), pp. 68-78.

[60]. Box, G. & Cox, D., 1964. An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological), 26(2), pp. 211-243.

[61]. Di Sarno, C., Garofalo, A., Matteucci, I. & Vallini, M., 2016. A novel security information
and event management system for enhancing cyber security in a hydroelectric dam.
International Journal of Critical Infrastructure Protection, Volume 13, pp. 39-51.

[62]. Ferreira, P., Le, D. & Zincir-Heywood, N., 2019. Exploring Feature Normalization and
Temporal Information for Machine Learning Based Insider Threat Detection. Halifax,
Canada, IEEE, pp. 1-7.

[63]. Freeman, M. & Tukey, J., 1950. Transformations related to the angular and the square
root. The Annals of Mathematical Statistics, pp. 607-611.

[64]. Gashteroodkhani, O. et al., 2019. A protection scheme for microgrids using time-time
matrix z-score vector. International Journal of Electrical Power & Energy Systems,
Volume 110, pp. 400-410.

[65]. Google Developers, 2020. Data Preparation and Feature Engineering for Machine
Learning - Normalization. [Online]
Available at: https://developers.google.com/machine-learning/data-
prep/transform/normalization [Accessed 14 12 2020].

[66]. Liu, Y. et al., 2015. Predicting cyber security incidents using feature-based
characterization of network-level malicious activities. Richardson, Texas, ACM, pp. 3-
9.

[67]. Meira, J. et al., 2020. Performance evaluation of unsupervised techniques in cyber-
attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing,
11(11), pp. 4477-4489.

[68]. Molina, A., Natarajan, S. & Kersting, K., 2017. Poisson Sum-Product Networks: A
Deep Architecture for Tractable Multivariate Poisson Distributions. San Francisco,
California, AAAI, pp. 2357-2363.

[69]. Osborne, J., 2002. Notes on the use of data transformations. Practical assessment,
research, and evaluation, 8(1), p. 6.

[70]. Osborne, J., 2010. Improving your data transformations: Applying the Box-Cox
transformation. Practical Assessment, Research, and Evaluation, 15(1), p. 12.

