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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability.
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Executive Summary 

The protection of critical infrastructures is a complex activity that requires work at different levels and 
correlation of events in order to understand what is happening and how to better protect a system. In this 
way, we can differentiate between different strategies: pre-emptive solutions, active solutions, reaction 
capabilities, analysis and adaptability, self-healing, etc. As we know it doesn’t exist a perfect strategy for 
protecting systems, one of the initial activities we have performed in CyberSANE is to list and study 
different protection mechanisms that will be adapted in our approach in order to understand how to  
improve and advance them. 

Due to the criticality of the CIIs we focus here in proactive detection and response of cyber-threats as 
from our point of view it is key for the successful development of the CyberSANE platform. Therefore, an 
extensive study on the latest works regarding the proactive detection and response methodologies has 
been carried out in order to identify the most prominent solutions in this area. The areas of research were 
selected after several discussions in the project and aiming to cover the tools and approaches we have 
in the technical WPs, with special focus in WP5 (hybrid-net). The findings of this study aim to serve as 
the basis for the rest of the tasks in order to pick out the most suitable approaches for the implementation 
of the Cyber Fusion Models. This could be done by either integrating one or more of the presented 
methodologies or by enhancing the capabilities of the currently owned consortium tools through the 
development of additional features in need.
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 Introduction 

This deliverable presents the findings and work performed in Task 5.1. We describe a detailed state-
of-the-art on proactive detection and response approaches that will be used as basis for the 
enhancement of the other activities done in CyberSANE, more concretely in WP5. The different 
areas covered here were selected after discussing at technical level of the more important elements 
we need to cover in the project and information we need for improving some tasks and activities, 
such as the models or the algorithms for the anomaly detection tools. 

This document provides a desk research on the latest methodologies used to counterattack and 
handle cybersecurity threats with respect to Critical Infrastructures (CIs) and Critical Information 
Infrastructures (CIIs). The rest of this document is structured as follows: 

• Chapter 2 describes the state-of-the-art on incident handling frameworks, incident response 
strategies, and approaches of digital chains of evidence. 

• Chapter 3 briefly presents CyberSANE’s threat taxonomy as a mean to identify the necessary 
set of threats that should be addressed in this deliverable, followed by a number of tools and 
techniques for the efficient proactive detection and response. 

• Chapter 4 includes both the most widely known and latest works on anomaly-based detection 
methodologies across various technological backgrounds like statistical, machine learning, 
data mining, deep learning, and genetic algorithm techniques. 

• Chapter 5 documents the risk assessment methodologies, the attack and simulation 
environments found in literature, as well as the data visualization techniques of an attack. 

• Chapter 6 features the concluding remarks of this deliverable. 

• Chapter 7 includes a glossary of the most commonly used abbreviations. 

• Chapter 8 concludes with all the bibliography of this deliverable. 
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 Incident Handling & Response Approaches 

This chapter describes the latest works on incident handling and response approaches which could 
be of potential use in CyberSANE project, focusing on both widely adopted strategies, and several 
frameworks tailored to the needs of specific industries. A short review on the existing standards, 
guidelines and best practices for the prevention, detection, response and mitigation of threats on CIs 
has been already described in deliverable “D2.1 - Cyber Incident Handling Trend Analysis”. 
However, since the analysation and prioritisation of such incidents is perhaps the most critical point 
of decision within the security incident process (Cichonski, et al., 2012, p. 32), each approach shall 
be thoroughly analysed in the upcoming Tasks of WP5 to end up with a properly coordinated and 
distributed incident handling solution. This solution aims to provide a set of predefined procedural 
actions that could effectively manage any security, covering thus most of today’s requirements and 
challenges regarding the protection of CIs (Alcaraz & Zeadally, 2015). 

 

2.1 Incident Handling Frameworks 

The relatively recent discovery of Stuxnet worm and its potential impact on today’s CIs (Farwell & 
Rohozinski, 2011) emerged the necessity to address cyber-security and privacy-by-design aspects 
in a holistic manner, in order to efficiently shield a CI’s hardware and software components against 
both existing and future cyber-threats. At first, several initiatives were implemented based on well-
defined frameworks which followed business-related guidelines and organizational risk management 
processes. However, this high-level perspective in detection and prevention phases, quickly denoted 
the need of a deeper and more robust analysis, giving birth to a next generation of frameworks. The 
initial framework that introduced cybersecurity improvements to CIs (NIST, 2014) was issued by the 
National Institute of Standards and Technology (NIST) back in 2014 and acted as the cornerstone 
for several other frameworks. A typical example found on literature lies to the definition of the Italian 
National Cybersecurity Framework (Baldoni & Montanari, 2016) which may conform with NIST’s 
guidelines, but it is heavily oriented towards the Italian law and enterprises. However, a purely 
practical point of view at limiting the effects of cyber-attacks was addressed in (Bottazzi, et al., 2017), 
where a recording of the suggested procedures which have to be followed by the IT team of an 
organization like a CI took place. This study produced a minimal set of arrangements that must be 
adopted in order to efficiently handle a security incident across time, space, and data domains. All 
the well-defined and tested prior (ex-ante) and post (ex-post) actions to a cyber-attack are displayed 
in Table 1. The proposed planning and deployment could be indeed characterized as resourceful 
and time-consuming measures, but on the other hand, the expected time and cost gains from the 
sufficient handling of a potential security incident overcome these factors. 

 

Domain 

Actions 

Ex-ante Ex-post 

Time 

Minimize Internet border gateways Close all or part of the Internet border gateways 

Logging of the critical information in a usable 
format 

Scan logs starting from the ones related with the 
compromised sector 
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Space 

Initiate a deep hardware and software probing 
of the infrastructure 

Limit or restrict traffic coming from compromised 
sectors 

Proceed to network’s segmentation Denial of services to the compromised network links 

Identify and segregate each application’s data 
Prevent any communication between the 

compromised application and the rest of infrastructure 

Support of a CDN (Content Delivery Network) 
service 

Switch to the CDN (Content Delivery Network)  
service 

Access application services through limited 
and well-known only terminals 

Isolate access to application services 

Access infrastructure services through limited 
and well-known only terminals 

Isolate access to infrastructure services 

Data 

Configure backup of services and data 
Initiate a recovery process from an existing offline-

backup 

Employ data encryption capabilities Reduce data access to only a few entities 

Set-up and put offline workstations for 
emergency cases 

Deploy to production the already prepared offline 
workstations 

Table 1: Incident Handling Actions Across Time, Space, and Data domains 

 

Another incident handling framework which lied the foundation for the overall security management 
at the Computer Emergency Response Team (CERT) of the Republic of Mauritius was introduced 
in (Usmani, et al., 2013). The presented framework denoted the high organizational value of the 
information exchanged over a network like the Internet and succeeded in easing the task of traffic 
monitoring conducted by a local Internet Service Provider. The key concept behind their incident 
handling was a three interdependent layered architecture of the framework, where stakeholders are 
actively involved in its overall implementation. The core layer encapsulates all the necessary security 
mechanisms, and the last layer displays the results of the monitoring process. Their solution was 
able to handle security incidents and breaches in a timely manner, allowing the design of a security 
policy and the set-up of an effective business continuity plan (BCP). The potential invasiveness to 
sensitive information was detected by an automated monitoring mechanism, preventing thus its 
improper or criminal usage by third-party tools or threat-actors (Bottazzia & Mea, 2017). However, 
this framework as well as most of current approaches make use of linear procedures optimized for 
the handling of a single incident, lacking thus on the sufficient handling of complex or simultaneous 
cyber-attacks. The alarming rise of such kind of attacks denotes more than ever the need of a 
coordinated security incident handling methodology across several and different types of CIs, in 
order to enhance their threat-knowledge and assign timely a set of responsibilities and actions to the 
appropriate persons and resources. (Daley, et al., 2011) developed a coordination model based on 
a cooperative operations’ structure for the efficient handling of cyber-security incidents. Doing so, 
they were able to detect faster a cyber-threat and share its knowledge with the rest of peers 
compared with the traditional linear approaches. The presented incident handling operationalization 
took also into consideration the necessary autonomy, and customization capabilities of each CI, 
allowing them to finetune and scale their system according to specific needs. 

Another domain of interest lies to the CIs that belong to industrial sector and are usually controlled 
by a combination of specialized hardware and software solutions known as Supervisory Control and 
Data Acquisition (SCADA) systems. Since the efficient handling of a security incident by their 
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authorized personnel presupposes a necessary set of knowledge and skills, it is evident that security 
mechanisms for controlling human-made activities will be provisioned, without interfering though with 
the normal functionality of the CI. The research community shown quite limited interest towards this 
area since an agent-based framework (Bigham, et al., 2004) for the monitoring of system and the 
automated relocation of personnel privileges was empirically the most noteworthy approach for 
several years. However, a most recent work by (Alcaraz, et al., 2009) came up with a reputation-
based mechanism which allows a SCADA system to identify the best possible operator to handle an 
incident, and a supervisor to monitor the operator and submit its feedback for assessment purposes. 
The presented reputation module made use of the “reward” and “fear” incentives to store human-
related information, as well as an Adaptive Assignment Manager (AAM) mechanism to assign the 
security incident to a certain operator, while the latter component was also responsible to find the 
ideal supervisor for the monitoring of the overall incident handling process. 

 

2.2 Incident Response Strategies 

An Incident Response (IR) strategy is nowadays deemed necessary to efficiently deal with the risks 
associated with the confidentiality, integrity and availability policies set up by a CI. From a technical 
management perspective, an incident response consists of several phases that aim to efficiently 
isolate and handle an incident in a timely manner. Even though that various methodologies have 
been proposed to reduce the impact of an incident’s effects and trace their origin (DePaul University, 
2002; Schreck, 2018), no universally adopted standard has been yet adopted. NIST has successfully 
identified the complexity and necessity of dealing with a security incident within an organisation, and 
they proposed a non-linear approach for the efficient “respond” to such incidents (Cichonski, et al., 
2012). They have defined the four incident response life cycle phases shown in Figure 1, which could 
be addressed in any future incident response framework or contingency plan. 

 

 

Figure 1: Incident Response Life Cycle 

 

The first phase lies to the preparation and actions undertaken to both prevent and handle a possible 
security incident. The preparation of an incident response involves the facilitation of communication 
and reporting mechanisms, integration of incident analysis hardware solutions, and adoption of 
mitigation software capabilities. On the other hand, the prevention of incidents takes place by 
providing some of the best practices on cyber security domain, like the execution of periodic risk 
assessments, improving network security with Virtual Private Network (VPN) solutions, enabling 
malware detection and protection tools, etc. The second phase of Detection and Analysis takes 
advantage of a predefined set of attack vectors, which classify incidents based on the attack 

PREPARATION

DETECTION AND 
ANALYSIS

CONTAINMENT, ERADICATION 
AND RECOVERY

POST-INCIDENT ACTIVITY
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methodologies used along with the source of the most common precursors and indicators. The 
incident is then captured and documented by various techniques (e.g. network/system profiling, 
event correlation, packet sniffing, etc.), it is attributed a prioritisation and the appropriate individuals 
are notified according to the organisation’s policy. Afterwards comes the third phase of this life cycle, 
the Containment, Eradication and Recovery. At first it is chosen a containment strategy to decrease 
the effect of the security incident, followed by the collection of evidence across all systems of interest 
in order to identify the attacking hosts, and ultimately set up an eradication and recovery procedure 
where it is deemed necessary. Last but not least, the fourth phase comes to the fore, where Post-
Incident Activities take into account incident-related metrics and evidence retention methodologies 
to learn about new threats and further improve the cyber security of an organisation like a CI. 

Following a similar approach but focusing into providing a well-defined management framework with 
a complete methodology capable of efficiently handling a security incident, (Mitropoulos, et al., 2006) 
combined all the necessary actions that should be taken once such an incident takes place. Their 
framework not only included the best practices and technological implementations on research and 
applied techniques in the form of passive incident response mechanisms, but they also examined 
and integrated several active incident response mechanisms to identify attacker’s origin by deploying 
concrete software forensics traceback techniques (Mandia, 2001). At first, they stressed the 
requirement of marking and dealing with the critical security components of the system during the 
Preparation phase, which include the operating systems, the boot disks, the backup media and their 
procedures, the cryptographic checksums of critical application files, and the audit trail of system’s 
components. In the upcoming Identification phase, two approaches are followed depending on the 
severity of the security incident, where either the attacker’s point of entry is violently terminated to 
prevent further exposure of the system, or the system remains open as long as possible on purpose 
in order to collect as much information as possible. Such information is later taken into consideration 
in the form of evidence from the system’s log examination and analysis processes. The second 
approach is also closely related with the Containment phase of their framework, where it aims to 
reduce the impact of an incident to a desired only context by disabling specific services, changing 
breached user accounts, temporarily disconnecting -or even- shutting down the compromised 
system. Afterwards, the Eradication phase comes into play to apply techniques that aim to prevent 
the reoccurrence of this specific incident attack by reinstalling/rebuilding one or more components 
of the infected system. Once all the necessary attacker elimination actions have been completed, 
the Recovery phase focus on the restoration of the appropriate services after carefully reviewing 
their configuration and the adopted protective and detective mechanisms. Finally, the overall incident 
response process concludes with the Follow-Up phase which documents all the afore-mentioned 
information and submits it for an evidence forensically sound analysis. Common mechanisms used 
to analyse and trace back an incident involve ICMP-based, IP marking and IP tunnelling techniques, 
but they also used host-based and application-based approaches like the Intruder Detection and 
Isolation Protocol (IDIP) integrated already in various intrusion detection systems (Schnackengerg, 
et al., 2001). 

Except from the widely adopted NIST guidelines and its varieties on both research and applied areas 
of interest, there are several other recommendations which are also related with the incident 
response management. The SANS Technology Institute has published a brief guideline (Kral, 2012) 
composed of a 6-step process similar to NIST for the identification and handling of a security incident 
as shown in Figure 2, while the European Union Agency for Cybersecurity (ENISA) in (Maj, et al., 
2010) skips the Preparation phase and enhances the actions that must be undertaken during and 
after the incident takes place. The common point between all those guidelines lies to the fact that 
they tend to comply with the structure defined in ISO/IEC 27035, a standard which stands out for its 
recommended information security incident management practices (ISO/IEC JTC 1/SC 27, 2016). 
The application of such practices has been reported before in literature across a variety of domains 
ranging from financial and research institutions, to IT service and power industries. An extensive 
survey on a finite set of incident management aspects for various organizations, along with their 
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relative collection methodologies took place in (Tøndel, et al., 2014). This study provided 
suggestions for addressing the challenging practices in incident response by creating plans and 
classification of incidents, promoting collaboration and sharing lessons learnt between distinct teams 
and disciplines, as well as improving the existing incident management tools in the context of 
usability and false positive alerts. The same work also noted that those CIs which fall into power 
industry had not established a sufficient incident management plan for their smart grids, the users’ 
information awareness was quite limited, and the network monitoring for abnormalities was done in 
a manual way (Line, 2013). In these cases, it was proposed the composition of a special team with 
extended decision-making power to fill the gap between Information and Communication Technology 
(ICT) and power automation staff, a Computer Security Incident Response Team (CSIRT) capable 
of detecting in time a cyber-security incident and countering its further impact upon the system. 
Specific actions that could be performed by such CSIRTs during and after a cyber-attack have been 
addressed in (Ruefle, et al., 2014; Steinke, et al., 2015), where a set of the necessary skills, as well 
as the collaboration of teams involved in security incidents’ management, are thoroughly explained 
at an organization-level. 

 

 

Figure 2. NIST & SANS Response Steps 

 

All the aforementioned phase-based process of an incident along with its collaborative nature has 
been attributed as a pervasive feature of the security management that lies within a CI. Thus, 
handling a typical security incident is mainly based on an intensive diagnostic work which involves 
empirical data, analytical skills, communication skills, and the use of various strategies and security 
tools depending on the phase and the task as shown in Table 2. The results reflected in that table 
was the outcome of a qualitative analysis of the tasks performed by several IT security specialists 
across various high reliability organizations (Werlinger, et al., 2010). During the diagnosis of a 
security incident, several tasks were run by deploying various security tools in conjunction with a set 
of predefined strategies like the pattern recognition, hypothesis generation, communication and the 
dynamic integration of distinct security tool, a process also known as bricolage. However, since the 
cyber-threats field and zero-day attacks keep evolving over time, so must the incident response 
process. All relative tools and strategies followed, require a continuously monitoring and mixture of 
a solid technological and communicational background. Doing so, it is feasible not only to efficiently 
diagnose a security incident, but also deal sufficiently with its effects regardless of the task 
complexity hidden beneath and the triggering of a -sometimes- vast amount of false positive alarms 
in the context of an organization like a CI. 
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Phase Task Strategies Security Tools 

Preparation 

Vulnerability 
Assessment 

Tacit Knowledge 

Scanners (e.g. Nessus, ISS) 

Community Lists 

Tool Configuration Communication Complex Organization Tools 

Anomaly Detection Monitoring 

Pattern Recognition 

Customizable Scripts 

Collaboration 

Simulation 
IT Tools (e.g. IDSs and Antivirus 

Software) 

Anomaly Analysis 

Receiving 
Notifications 

Tacit Knowledge 

Incident Ticketing System 

Communication 

Verification 

Hypothesis Generation Analytical Skills 

Tacit Knowledge 

Customizable Scripts 

Assessment 
Administration Applications (e.g. 

Firewall Solutions) 

Pattern Recognition 

Traceback Anomaly 
Source 

IT Tools (e.g. IDSs and Antivirus 
Software) 

Hypothesis Generation Analytical Skills 

Bricolage Scripts and Tools Combination 

Table 2: Security Incident Response Strategies and Tools 

 

2.3 Digital Chains of Evidence 

Nowadays, every embedded hardware or software component which plays a key role to the expected 
and uninterrupted functionality of a CI makes use of a data logging mechanism. Such mechanisms 
automatically generate and store data that provide crucial information about a security incident, like 
a network breach or a system compromise. According to (Kerr, 2005) this available information could 
be further correlated with one or more events, creating thus digital chains of evidence. A digital chain 
of evidence consists of digital evidence records which have to be secured against a predefined set 
of parameters necessary for the validation of the information. In the near past (Olsson & Boldt, 2009) 
presented the CyberForensic Timelab, a prototype scanner implemented with various file handlers 
written in Perl language. Their approach was able to scan and supplied with a collection of evidence, 
which in turn they were encoded in Document Type Description (DTD) format for further evidence 
correlation and event display purposes. 

On the other hand, (Kumar, et al., 2011) addressed and tried to overcome the difficulties met in the 
interoperability of evidence collection with most Intrusion Detection Systems, and proposed a real-
time forensic analysis methodology to obtain enough evidence to detect any damages occurred and 
trace back the origin of an attacker. They applied a time-lining technique to obtain a chronological 
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sequence of events of interest and gain insight regarding a cyber-threat’s cause, impact, and 
interconnections. 

(Kuntze & Rudolph, 2011) presented a high-level architecture for collecting secure digital evidence 
by creating and storing a graph-based linking of each evidence record which ultimately represent 
one or more chains of evidence. Their approach made use of evidence generators based on 
hardware-based digital signatures (Richter, et al., 2010), evident collectors for the attribution of 
semantic information as well as the distribution of evidence records (Reith, et al., 2002), and a 
forensic database for the storage of those records in a graph-based structure (i.e. Resource 
Description Framework1). The required event correlation was possible by conducting either a 
graphical visualization of the relations between each evidence record, or by executing special 
purpose queries2 to search for possible matching evidence records. 

The need of collection and examination of digital evidence also gave birth to several proprietary tools 
and frameworks which treat evidence as binary objects, in order to proceed with metadata extraction 
and identify potential correlations. The most prominent solutions in this area are the EnCase 
Forensic3, AccessData Forensic Toolkit4, Sleuthkit , PyFlag (Cohen, 2008), and Wireshark 
(Ndatinya, et al., 2015). However, one crucial disadvantage of these tools lies to the fact that each 
one of them tends to specialize on certain only types of evidence, lacking thus the ability to conduct 
a holistic investigation and correlation of events. A typical comparison between their features, as 
well as the challenges that should be addressed regarding their diversity takes place in (Raghavan, 
2013). It is worth noticing that the latter study also embraces the opinion expressed by (Garfinkel, 
2010), where most digital forensic and chains of evidence solutions have to adopt standardized and 
modular approaches, in order to efficiently deal with the current threat landscape. 

 

 

1 https://www.w3.org/RDF/ 
2 https://www.w3.org/TR/sparql11-overview/ 
3 https://www.guidancesoftware.com/encase-forensic 
4 https://accessdata.com/products-services/forensic-toolkit-ftk 

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-overview/
https://www.guidancesoftware.com/encase-forensic
https://accessdata.com/products-services/forensic-toolkit-ftk
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 Proactive Detection & Response 

CyberSANE and any CI must adopt mechanisms able to perceive and treat a cyber-attack before it 
causes significant impact to system’s functionality. For that reason, several proactive intelligence 
and proactive information security approaches are being continuously deployed and tested across 
numerous organizations. However, due to the variety of threat-landscape, distinct approaches have 
been developed over the years. Such approaches tend to either enable defence point and policy 
enforcement for each system’s element, enhance the collaboration between those elements, or 
promote advanced adaptive technologies that automatically prevent a threat. 

 

3.1 CyberSANE Threat Taxonomy 

With the increase of crime in the cyberspace, it is necessary to possess a means of identification 
and countermeasure against these illegal business cases. The invention of threat classification 
mechanisms, called Threat Taxonomies, allow the association between the attacker’s actions and a 
given threat category, granting security experts to identify patterns and react accordingly, increasing 
response time. Together coupled with Threat Models, it is possible to identify and detect numerous 
threats perceived against a specific cyber infrastructure. These products are presented in more detail 
in deliverable “D3.1 - Taxonomy of Threat Landscape for CIIs”. 

Before teaching a machine the capabilities of threat detection, it is necessary to list all potential 
threats against the system. Using threat classification methodologies, cyber-security specialists can 
list and classify all potential threats, also including where necessary the vulnerabilities which are 
generally exploited as well as critical effects but also remediation steps. 

There are many different taxonomical approaches, each with their different strengths and 
weaknesses, such as NIST’s CSRC taxonomy (NIST, 2020), ENISA’s threat taxonomy (Marinos, 
2016), the Taxonomy of Operational Cyber Security Risks (TOCSR) proposed by (Cebula, et al., 
2014), and the Open Threat Taxonomy (OTT) developed from Enclave Security5. These different 
approaches are adapted to many different uses since they can take different forms, such as a mind 
mapping tree or a classical table. Moreover, taxonomies are designed to be applicable to the system 
which they are protecting, hence their elaboration by that systems cyber-security experts. This 
means that a taxonomy applied to specific system architecture with identifiable specifications and 
requirements, will not necessarily be exploitable on another system which could possess both 
different architectural decisions as well as specifications. An evaluation of such comprehensive 
taxonomies for information technology threats has been recently conducted by (Launius, 2018). 

Since CyberSANE’s purpose is to cover multiple CIIs and share detection information between units, 
multiple taxonomies are not feasible. A single taxonomy was, therefore, created to cover CIIs as a 
single system, decomposed into multiple sectors. The resulting product was based upon the format 
used by ENISA (Marinos, 2016), thus giving a solid ground to begin construction of CyberSANE’s 
core detection taxonomy. However, ENISAs taxonomical structure possessed certain limitations 
regarding its categorical choices. Indeed, certain threats such as Denial-of-Service or Man-in-the-
Middle attacks were categorised as single individual attacks, whereas in practice there are numerous 
methods to perform either attack. It was thus decided to expand upon the existing threats presented 

 

 

5 https://www.auditscripts.com/resources/open_threat_taxonomy_v1.1a.pdf 

https://www.auditscripts.com/resources/open_threat_taxonomy_v1.1a.pdf
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by ENISA, presented in Table 3, to expand into multiple subcategories, thus differentiating between 
the high level threat, and the threat type. 

 

High-Level Threats 

Physical 

Accidental 

Environmental Disaster 

Failure 

Outage 

Eavesdropping / Interception / Hijacking 

Nefarious Activity 

Table 3: High-Level Threat Categories 

 

It is immediately possible to identify that certain categories, such as “Eavesdropping” and Nefarious 
Activity” are vast areas, regrouping practically all cyber-threats. It was here that our Taxonomy was 
able to expand upon these categories, associating more specific threat types, as presented in Table 
4. 

 

High-Level Threat Threat Type 

Eavesdropping/ Interception / Hijacking Reconnaissance 

Eavesdropping 

Man-in-the-Middle 

Nefarious Activity Denial-of-Service 

Disruption 

Side-Channel 

Transmission Control Protocol 

Routing 

Authentication 

Confidentiality 

Wireless Sensor Networks 

Data Integrity / Breach 
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High-Level Threat Threat Type 

Software 

Malware 

Equipment 

Protocol 

Information Leak / False Information 

Table 4: Threat Types 

 

This identification allowed the ability to categorise threats more precisely, increasing ease of use 
towards adding new threats or even new threat type categories. This expanded the taxonomy into 
more specific areas, such as IoT based Wireless Sensor Networks (WSN), and even listing threats 
towards specific exchange protocols in control systems. The resulting taxonomy contains currently 
248 listed threats spread across a total of 22 threat categories. An extract of Physical level threats 
can be seen in Figure 3 and the threats towards WSNs can be seen in Figure 4. 

 

 

Figure 3: CyberSANE Taxonomy - Physical Threats 

 



 

D5.1 - Prevention and Response to Advanced Threats   

CyberSANE D5.1 Page 18 of 66 

 

 

Figure 4: CyberSANE Taxonomy - WSN Threats 

 

3.2 Proactive Detection & Response 

Proactive detection of a network security incident is the process of the early identification of an 
imminent cyber threat before the affected parties become aware of the problem itself. Proactive 
response of a network security incident is the action that occurs in order to prevent or mitigate the 
threat before the actual infection. The approaches, which are widely used for proactive detection 
and response by organizations, can be divided into two categories (Gorzelak, et al., 2011): 

i. the tools and techniques that can be deployed by an organization to internally monitor, 
detect and respond to cyber incidents 

ii. the services that offer information interexchange across organizations, related to already 
detected network security incidents.  

The most typical tools used for the proactive detection of network security incidents are firewalls, 
antivirus systems, system logs and intrusion detection/prevention systems, which are part of an 
organization’s network infrastructure. More advanced tools that usually require extra resources (e.g., 
dedicated hardware and system configurations, available IP address space) are honeypots, sensor 
networks, network telescopes, sandboxes and Domain Name Service (DNS) monitoring and 
analysis techniques. These tools are mainly used as early warning systems that gather information 
based on current attack scenarios all over the network. Other tools serve for network flow monitoring, 
full packet capture, sinkholing, monitoring of Internet routing, log and event aggregation, correlation 
and visualization, industrial control systems monitoring, cloud services monitoring, endpoint 
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monitoring, certificates monitoring, vulnerability scanning, automated malware analysis or 
information leakage monitoring. In the next paragraphs, we present some of the most popular and 
typical techniques and tools used for proactive detection of cyber security incidents. 

Firewall: A typical firewall is a device or software that serves as a monitor and as a filter that permits 
or denies certain network connections. Firewalls are categorized either as network-based or host-
based firewalls and can operate on different layers (e.g., application layer). Firewalls can be used in 
proactive incident detection by creating alerts when suspicious events occur. For instance, a 
suspicious event could be the communication of a known, blacklisted C&C server’s IP address with 
an organization’s internal IP address space. When such event is recognized, a firewall could raise 
an alert, prohibit the connection and then log the incident for further analysis. There are plenty of 
firewalls solutions; open-source or commercial, software-based or deployed on dedicated hardware 
devices. Popular firewalls are the following: iptables6, IPFire7, pfSense8, OpenWRT9. 

Intrusion Detection and Prevention Systems: An Intrusion Detection System (IDS) is not only 
able to monitor and analyse the network traffic in depth, but also inspect an operating system’s 
behaviour and files to identify malicious or abnormal activities. Depending on where the detection 
feature takes place, IDSs are classified as host-based or network-based systems. In both occasions 
however, an IDS can be also defined as an Intrusion Prevention System (IPS) thanks to its capability 
to respond to a security incident. For instance, an IPS is able to block a specific network connection 
that is characterized as malicious by employing a signature-based or anomaly-based methodology. 
More specifically, signature-based IDSs search for predefined attack patterns and heuristics (e.g., 
known malicious URLs inside the packet contents), while anomaly-based IDSs are able to learn how 
to distinguish normal activity from deviants. Popular intrusion detection/prevention systems are: 
Snort10, Suricata11, Zeek/Bro12. 

Honeypots: A honeypot aims to detect and monitor attempts of unauthorized use at machine or 
network level, by acting as a trap that attracts malicious agents. A honeypot (also known as server-
honeypot) can be an entire virtualized system or just an isolated part of the operating system. 
Advanced honeypot techniques have been reported in the literature (Moore, 2016), where a number 
of specific thresholds are used as the triggering mechanism for a staged response to a cyber-attack. 
Another type of honeypot is the client-honeypot, which aims for communication with malicious 
servers in order to determine if an attack occurs and gather information based on this attack. Any 
client software that can interact with servers is able to become a client honeypot (e.g., web browsers, 
FTP clients, e-mail clients) (Grudziecki, et al., 2012). A honeynet serves as a combination of several 
honeypots and offers the simultaneous monitoring of multiple networks. Popular honeypots are the 
following: Kippo13 (SSH honeypot), Cowrie14 (SSH+Telnet honeypot), GHH15 (web honeypot), 

 

 

6 http://freshmeat.sourceforge.net/projects/iptables/   
7 https://www.ipfire.org  
8 https://www.pfsense.org  
9 https://openwrt.org/docs/guide-user/firewall/start 
10 https://www.snort.org  
11 https://suricata-ids.org  
12 https://zeek.org  
13 https://www.honeynet.org/projects/old/kippo/  
14 https://github.com/cowrie/cowrie 
15 http://ghh.sourceforge.net  

http://freshmeat.sourceforge.net/projects/iptables/
https://www.ipfire.org/
https://www.pfsense.org/
https://openwrt.org/docs/guide-user/firewall/start
https://www.snort.org/
https://suricata-ids.org/
https://zeek.org/
https://www.honeynet.org/projects/old/kippo/
https://github.com/cowrie/cowrie
http://ghh.sourceforge.net/


 

D5.1 - Prevention and Response to Advanced Threats   

CyberSANE D5.1 Page 20 of 66 

 

HoneyMail16 (SMTP honeypot), Dionaea17 (low-Interaction honeypot), IoTPOT18(IoT honeypot), 
Multiple Honeypot Solution (MHN)19, CONPOT20(ICS/SCADA honeypot). 

Sinkholes: A sinkhole is a server or network component to which malicious traffic is intentionally 
directed for further analysis. For example, after the activity termination of a C&C server address, a 
sinkhole server can be used as a replacement to track every connection for bot detection and 
tracking. 

Sensor networks: Another approach to monitor a network and collect information that represents 
the communications of multiple and heterogeneous vantage points, is the deployment of a sensor 
network. Sensor networks’ applications include but are not limited to healthcare monitoring 
environmental monitoring, industrial monitoring and threat detection. Since the attack surface is 
really wide in such networks (Alzaid, et al., 2008), specialized setups of sensors with attacks’ 
simulations can be used to collect meaningful information that can be later used for proactive 
detection of security incidents. 

Sandboxes: A sandbox is an isolated environment, where untrusted or unverified applications are 
able to run without affecting the host system or the internal network. Consequently, the behaviour of 
the untrusted application can be inspected in order to determine whether it is malicious or not (e.g., 
contacts a known malicious C&C server). If the application is malicious, then it can be further 
analysed in order to gain behavioural information about the malware for proactive security incident 
detection. 

Network telescopes: A network telescope monitors network traffic that targets unused IP address 
spaces (Durumeric, et al., 2014). The network traffic that is destined to those IP addresses is 
considered suspicious, since it indicates automated scanning, DDoS backscatter or 
misconfigured/vulnerable devices, and can enrich mechanisms for proactive detection of security 
incidents. 

Passive DNS analysis: Passive DNS analysis can serve for the investigation of possible network 
security incidents, such as threats that originate from botnets, by detecting domains that are involved 
in malicious activities (Bilge, et al., 2011). The analysis of DNS logs could be used to detect infected 
IP addresses that could be then used to build blacklists of known malicious domains. 

Automated malware analysis and information leakage monitoring: Automated static malware 
analysis systems aim for the analysis of malicious files without using dynamic methods. These 
mechanisms can operate on binaries and memory dumps in order to extract static configurations of 
malware. Other relevant approaches focus on mobile malware identification. In addition, there are 
tools that monitor possible personally identifiable information from mobile applications. 

Except for the techniques that are used to detect and respond to cyber threats that exist in the wild, 
there is another aspect, which is fundamental for the proactive detection of network security 
incidents; the services that offer interexchange and knowledge sharing of cyber threat related 
information among organizations. These services and data feeds used for the proactive detection of 
network security incidents are either publicly available, commercial or require a user’s subscription. 
These threat intelligence data feeds provide users with up-to-date information regarding potential 
attack sources and malicious entities. Such information sources are feeds of malware URLs, 
phishing sites, botnet command and control (C&C) servers, infected machines (bots), sources of 

 

 

16 https://github.com/sec51/honeymail  
17 http://dionaea.carnivore.it  
18 https://github.com/IoTPOT/IoTPOT 
19 https://github.com/pwnlandia/mhn 
20 http://conpot.org/ 
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abuse (e.g., spam), defaced websites, vulnerable services (ENISA, 2020). In the following 
paragraphs, we present some of the most popular services that aim for information sharing across 
organizations. Other relevant feeds can be found in ENISA’s GitHub repository that contains a 
comprehensive list with external information sources for proactive detection of incidents21. 

MeliCERTes: The Cyber Security Platform MeliCERTes is part of the European Strategy for Cyber 
Security and is a network that focuses on establishing confidence and trust among national CSIRTs 
of the member states by promoting operational cooperation and sharing focused on computer 
security incidents22. MeliCERTes is a platform that offers a security incident management solution, 
while it makes use of open-source projects; IntelMQ23, Malware Information Sharing Platform (MISP) 
(Wagner, et al., 2016), Viper24, OwnCloud25, Jitsi26. IntelMQ collects and analyses security 
vulnerability events from multiple sources. MISP organizes the collected information, presenting 
each distinct vulnerability report as an event, which is then available for exchange among CSIRTs. 
Viper receives the events that are produced by MISP for critical malware analysis. OwnCloud is used 
to securely exchange files within Trust Circles, while Jitsi offers real-time communication channels 
meant for quick response and collaboration. 

OASIS Cyber Threat Intelligence: The OASIS Cyber Threat Intelligence27 supports automated 
information sharing for cybersecurity situational awareness and real-time network threat analysis. 
The platform is based on the Structured Threat Information Expression (STIX) language and 
serialization format for cyber threat intelligence exchange (Barnum, 2014). In addition, Trusted 
Automated Exchange of Intelligence Information (TAXII) is used, which serves as an application 
layer protocol for the secure communication of the cyber threat information over HTTPS (Connolly, 
et al., 2014). 

The ShadowServer Foundation: The ShadowServer Foundation is a non-profit security 
organization that collects and shares threat related data (e.g., botnets, C&C and DoS reports). The 
data cover multiple types of network security incidents and the reports produced are shared across 
network providers, national governments and law enforcement28. 

Malware Domain List: The Malware Domain List offers data that concern malicious domain names, 
which are known to propagate malware29. 

Abuse.ch: Abuse.ch30 shares malware-related data via different tools and services, such as 
URLhaus31, SSL blacklist (SSLBL)32 and MalwareBazaar33. URLhaus is a project that aims for 
sharing malicious URLs that are being used for malware distribution. SSLBL detects malicious SSL 
connections, by identifying and blacklisting SSL certificates used by botnet C&C servers. 

 

 

21 External information sources for proactive detection of incidents. Available in:  
https://github.com/enisaeu/IRtools/blob/master/information_sources.md  
22 https://github.com/melicertes/csp  
23 https://github.com/certtools/intelmq  
24 https://github.com/viper-framework/viper  
25 https://github.com/owncloud  
26 https://github.com/jitsi  
27 https://oasis-open.github.io/cti-documentation/  
28  https://www.shadowserver.org  
29 http://www.malwaredomainlist.com  
30 https://abuse.ch/  
31 https://urlhaus.abuse.ch  
32 https://sslbl.abuse.ch  
33 https://bazaar.abuse.ch  
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MalwareBazaar shares malware samples with the infosec community, AV vendors and threat 
intelligence providers. 

The SpamHaus Project: The Spamhaus Project is an international non-profit organization that 
tracks cyber threats such as spam, phishing, malware and botnets. The SpamHaus project shares 
threat intelligence with networks, corporations and security vendors, and works with law enforcement 
agencies to identify and pursue spam and malware sources worldwide34. 

All of the aforementioned tools, techniques and services have been widely adopted within the cyber-
security domain, aiming to timely detect a threat and efficiently prevent its spread. Over the last few 
years, a couple of works have presented some novel detection methodologies based on them, which 
require significant lower computational cost and perform faster comparative analysis in respect with 
older classical approaches. In (Naik, et al., 2019), it was addressed the necessity of dealing with the 
ransomware attacks across all kind of enterprises, mainly due to their polymorphic behaviour and 
their dominance over the rest of cybersecurity threats. The proposed methodology utilised a range 
of fuzzy hashing algorithms and clustering methods for the detection of ransomwares by attributing 
them with a similarity factor based on a sample dataset of such threats. On the other hand, (Cruz, 
et al., 2016) presented a domain-specific solution for SCADA systems, where a multi-layered 
Distributed IDS was deployed and evaluated against an electrical distribution grid with satisfactory 
results in the context of CIs. 

 

 

34 https://www.spamhaus.org/  

https://www.spamhaus.org/
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 Anomaly-Based Detection Methods 

Anomaly-based detection methods aim to identify unusual patterns that do not conform to the 
expected pattern of a target group. Anything that deviates from this expected behaviour is considered 
as an anomaly and could denote a serious cybersecurity threat to the system. An Anomaly Detection 
System (ADS) can utilize several techniques for the recognition of anomaly, which range from 
statistical and rule-based approaches, to machine learning and data mining approaches. 

 

4.1 Statistical Approaches 

One of the simplest approaches to identify anomalies in a dataset lies in the usage of a statistical 
data analysis procedure. Such approaches are capable of flagging those data points that deviate 
from a statistical distribution parameter, denoting in that way a potential threat to the system. Typical 
examples of such parameters vary from the arithmetic mean and standard deviation to regression 
models and hypothesis testing. Statistics-based techniques in an ADS, monitor every network flow 
of the system and are employed to search for activities that are not considered normal and compare 
them with normal ones. The normal activities, also known as profiles, can be user, network 
connections, network traffic, etc. The characteristics of this approach are simple to implement, it 
could be deployed in real-time, but it requires very good knowledge on statistics. The most widely 
used statistical approaches can be classified into Principal Component Analysis, Clustering, and 
Entropy Analysis. 

 

4.1.1 Principal Component Analysis 

A Principal Component Analysis (PCA) employs dimension reduction approaches that aim to make 
simpler the detection of potential cybersecurity attacks. It is a widely used procedure to reduce 
dimensions and summarize the data in large datasets for further analysis and visualization. It 
processes the data and tries to interpret their structure by means of a number of components which 
are the linear combinations of the original variables. PCA is often not a standalone approach rather 
the first step of the data analysis that could be later used by other techniques that are more 
multivariate. In the classical PCA approach, the first principal component corresponds to the 
direction in which the projected data points have the largest variance. The second component is 
then taken orthogonal to the first and must again maximize the variance of the data points projected 
on it. The procedure happens until all the principal components are produced. Unfortunately, it is 
very sensitive to anomalous observations, thus the outlying points can be captured early on and 
have a negative impact on the analysis (Rousseeuw & Hubert, 2018). In addition, it may not capture 
the variation of regular observations. The steps of the PCA anomaly detection algorithm are: 

i. Provide a data set of normal activities and operations of the network that could be used 
as a training set for the PCA model in the next steps 

ii. Pre-processes the provided data so they have zero mean and unit variance 
iii. Train and deploy the PCA model using the training set consisted of the normal data flows 
iv. Test the new data after scaling them down with the mean and standard deviation acquired 

from the training set 
v. Use the trained model to check for anomalies of the new data 

PCA has a reputation for being successful in monitoring systems with highly correlated variables. In 
(Harrou, et al., 2015) it was developed a PCA-based Multivariate CUmulative SUM (MCUSUM) 
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strategy for the detection of small anomalies on the emergency department of a hospital centre. The 
results of the proposed algorithm showed that this MCUSUM solution was able to improve the 
anomaly detection capabilities of the tested system compared to the classical PCA-related 
approaches. 

 

4.1.2 Clustering 

Clustering methodologies aim to describe an available dataset by grouping similar items into several, 
but distinct categories known as clusters. These clusters afterward determine the key behaviour 
elements that could be used as a similarity measurement to detect various types of attacks. Cluster 
analysis is very useful when handling large datasets since it finds groups with similar characteristics 
in the data that can be analysed separately. Cluster analysis can be divided into two major categories 
(Bhuyan, et al., 2014).  

The first category is known as partitioning clustering, which means that the method is breaking the 
dataset into separate groups. The methods that belong in this category search for the best available 
clustering in k groups. The most popular method is k-means which is used to find groups that have 
not been explicitly labelled in the data. It uses the squared Euclidean distances and minimizes the 
sum of those distances. An advantage of k-means is that it exceeds the hierarchical clustering in 
computational speed if the variables are huge and the k is relatively small. On the other hand, it is 
difficult to predict the k value thus k-means could not consider robust because it uses averages 
rather than specific values. A partitioning clustering that is more robust is the Partitioning Around 
Medoids (PAM) or k-medoids method. It is similar to the k-means method (both try to minimize the 
distance between points labelled to be in a cluster and a point designated as the centre of that 
cluster) but PAM uses data points as clusters' centres (medoids) while in k-means the centre of the 
cluster does not necessarily to be within the input data points. For a partitioning approach, if k 
(number of clusters) can be provided accurately then the task is considered easier. Incremental 
clustering (in supervised mode) techniques are effective for fast response generation while it is also 
advantageous in cases of large datasets that grouped into a similar number of classes for detecting 
network anomalies because it reduces the computational complexity during intrusion detection. It 
provides stable performance in comparison to classifiers or statistical methods. 

The other category of clustering is hierarchical clustering that builds clusters in the form of levels. 
Unlike the previous category, the hierarchical clustering does not require a number of clusters during 
the initialization phase. Hierarchical clustering algorithms make use of either divisive methodologies, 
or agglomerative methodologies. Practical tests between those two types in both random and real-
life data sets showed that no algorithm can be clearly declared as superior, but their performance 
and accuracy are rather based on the dataset used (Roux, 2018). In the divisive (or top-down) 
clustering method, the first step is to assign all the observations to a single cluster and then partition 
the cluster to two least similar clusters. This happens recursively for each cluster until there is one 
cluster for each observation. The inverse of the divisive method is the agglomerative method (or 
bottom-up) clustering method where each observation is assigned to its own cluster. The procedure 
is again recursive; thus, the similarity of the clusters is computed, and the two most similar clusters 
are joined. This happens until only a single cluster is left. In generic, a drawback of clustering-based 
methods is that in the majority the proposed techniques have been used to handle continuous 
attributes only. Also, clustering-based intrusion detection techniques make the assumption that the 
larger clusters are considered normal and smaller clusters as an anomaly (e.g. an intrusion). This 
assumption eases the evaluation procedures of the technique otherwise it would be harder to do so. 

Clustering approaches like the k-means and the Expectation Maximization techniques have been 
also used for observation validation purposes in other studies. (Bou-Harb, et al., 2013) motivated by 
the lack of accurate enough scanning detection systems, proposed a novel fingerprinting statistical 
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approach which combined several statistical techniques and probabilistic distribution methodologies 
like the Bhattacharyya distance (Kailath, 1967), Mann-Kendall (Kendall, 1948), and Wald-Wolfowitz 
(Friedman & Rafsky, 1979). Doing so, they were able to efficiently analyse probing activities and 
identify the scanning technique, the software tool or the worm/botnet used, as well as certain 
predefined patterns followed. Their empirical evaluation was performed on the analysis of a massive 
55GB darknet traffic dataset, where the extracted inferences were not only promising in terms of 
accuracy, but they could be potentially used for threats’ mitigation as well. Other works (Ye, et al., 
2001) deployed clustering techniques for the efficient host-based intrusion detection, where a 
Statistical Process Control (SPC) methodology was responsible for the process stability and the 
reduction of variability. Several years later, a similar SPC approach was also incorporated as the 
core detection technique and threshold verification mean of a framework able to detect fast attacks 
from the victim perspective (Abdollah, et al., 2009). Their study proposed the usage of a dynamic 
threshold value to differentiate the normal and abnormal behavior in a network, depending on both 
real network traffic data and data coming from an experimental setup. 

 

4.1.3 Entropy Analysis 

Today, several traffic anomaly detection applications make use of an entropy-based approach to 
measure the randomness or diversity of their data-generated functions. Entropy is defined as the 
level of irregularities that occur in a system. There are many forms of entropy, but only a few have 
been applied to network anomaly detection. The most used form of entropy is the Shannon entropy 
(Shannon, 2001), that measures the entropy of the information content. In a few words, entropy-
based anomaly detection consists of detecting sudden changes in the time series of the empirical 
entropy of specific traffic characteristics that are related to the specific anomaly. The entropy of a 
characteristic shows the scattering of the corresponding probability distribution in a single number, 
that helps the analysis. However, such a compression necessarily loses relevant information about 
the distribution of the analyzed feature. Besides Shannon, Titchener (Titchener, 1998) and 
parameterized Rényi (Yan, et al., 2008) and Tsallis entropies (Basicevic, et al., 2015), more 
generalized or specialized forms of entropy can be also found in network anomaly detection 
research. In the meanwhile, (Nychis, et al., 2008) had already proceeded to an empirical evaluation 
of several entropy-based metrics used for network anomaly detection purposes. The results of their 
study showed that port and address distributions do not suffice alone in a fine-grained anomaly 
detection system, while at the same time, traffic features distributions should be computed using bi-
directional flow abstractions in order to avoid false positives. Over the last few year, (Bereziński, et 
al., 2015) presented a parameterized entropy combined with a supervised learning solution, which 
was able to outperform the classical Shannon-based, as well as the volume-based limitations 
referenced in the previous work. 

 

4.2 Machine Learning Techniques 

The fast-growing field of cybersecurity and the need of efficiently dealing with advanced threats in 
optimal times, led to the development and deployment of diverse Machine Learning (ML) 
methodologies. All studies in this area adopt the key properties of ML algorithms, which are no other 
than the scalability and adaptability. These features are of course deemed necessary in the 
development of CyberSANE’s Cyber Fusion Models, in order to guarantee system’s rapid response 
to new and uncharted security threats. ML algorithms can be categorized into four distinct categories 
depending on the approach followed during the process of their input and output data (Ayodele, 
2010). Supervised learning approaches tend to make use of labelled instances as training data with 
the corresponding desired output. In those occasions, ML takes advantage of various supervised 
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learning techniques to identify previously unknown events that differ significantly compared with the 
target investigated dataset. On the other hand, unsupervised learning approaches look for 
unidentified patterns in a dataset with non-existing labels in order to properly classify new instances 
with minimum human interaction. Semi-supervised learning lies between supervised and 
unsupervised learning by combining both labelled and unlabelled data during training. Semi-
supervised learning approaches tend to find use in the detection of network anomalies with 
satisfactory results regarding threats’ detection rate and the overall false positive rate. Last but not 
least, reinforcement learning approaches take into consideration the software agents of a system 
and the actions that have to be taken by them in conjunction with their environment. Their ultimate 
goal is to generate experience which could be used to maximize long-term rewards. 

 

4.2.1 Intrusion Detection 

One of the most important elements in a network, from the point of view of network management 
and cybersecurity, is to keep it safe from malicious intrusions. If a malicious attacker is able to access 
your network, it could have a massive impact in your system, ranging from economic losses, to 
downtime of services, data breaches, and loss of customer trust. 

An Intrusion Detection System (IDS) is a cybersecurity tool that works with your network to keep it 
secure and inform when somebody is trying to break into the system. There are exist different types 
of IDS on the market and figuring out which one fits better with the needs a user may have is 
complex. An intrusion detection solution can be defined as the anomaly detection problem where a 
null hypothesis of no intrusion is assumed, the network is continuously trained with new data to 
deduct a “normal” behaviour, and once an intrusion hypothesis is applied then a certain set of 
anomalies should be evident in the model (Rubin-Delanchy, et al., 2016). Today, CIIs are composed 
of several network security systems where each one of them comes with its own IDS. An IDS aims 
to discover and identify external and internal intrusions, preventing in this way the leakage or 
alteration of sensitive information to unauthorized users. For that purpose, various ML methods 
(Buczak & Guven, 2016) have been proposed in the near past to deal with the cyber security 
intrusion domain. Their complexity and outcomes were heavily based on the datasets used for 
training and learning purposes (Tavallaee, et al., 2009; Yavanoglu & Aydos, 2017), where either a 
packet-level or flow-level dataset was selected and had its headers employed for the needs of 
intrusion detection. A couple of key challenges addressed in this study were the necessity of 
partitioning the input data streams, employing less difficult and time-consuming learning datasets, 
and collect as much results as possible working in a parallel mode. 

As aforementioned, network intrusion detection can be performed in a high number of ways. This is 
one of the issues of why it is important to have an updated and strong intrusion detection solution 
that can cover the large number of attacks that could possibly occur in a system. Additionally, this is 
one of the most important issues that should be dealt in CIs. Therefore, it is quite crucial to 
understand the type of attacks that can be used in order to prepare an effective prevention. Usually, 
network intrusion is done using flooding techniques or overloading the network in order to gather 
data from it, so that it can be later attacked from a weak point or inserting malicious data in the 
system for gaining access. Among others, some of the most typical attacks that could target a system 
and be detected by an intrusion detection solution are the following ones. 

Malware: There exist several different types of malware that could affect a system. Among others, 
the most commonly used are viruses, trojans, bots, etc. Each type has a different way of working 
and how it compromises a system, ranging from simply blocking a system, to running in the 
background and compiling information of users or the system for years without no one noticing it. 

Scanning attacks: This attack involves sending data packages (information) to the network in order 
to obtain knowledge about the network topology, ports (open or closed), type of traffic allowed in the 
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network, etc. This type of attacks usually scans ports in order to introduce malicious applications 
(virus) or code. 

Asymmetric routing: Attackers use asymmetric routing (when the data in a network uses a different 
path for sending and receiving) in order to send malicious data to the network so it can bypass 
cybersecurity setups (e.g. firewalls). 

Buffer overflow attacks: This type of attack is very common and is used for penetrating sections 
of memory of devices on a network in order to replace the regular data with malicious ones that could 
subsequently used for executing an attack. 

Traffic flooding: This type of attacks is more commonly known as Denial of Service (DoS) and 
Distributed Denial of Service (DDoS). Its main objective is to saturate the network so it can be 
disabled, or make it easier to be penetrated by other type of attacks. 

Protocol-specific attacks: Specific attacks targeting protocols used for network communication 
such as TCP, ICMP, etc. 

CIs like power infrastructure control systems have been proved to be a common target of various 
cyber-security threats, mainly due to absence of physical security in the context of substations 
(Govindarasu, et al., 2012), as well as the lack of mature anomaly detection technologies for those 
substations. Simultaneous and continuous cyber-attacks could even lead to catastrophic cascading 
events like a power outage of the infrastructure. (Hong, et al., 2014) proposed a novel integrated 
anomaly detection algorithm, capable of monitoring critical devices and communications (intelligent 
electronic devices, transformers, circuit breakers, etc.) for intrusion detection. Their approach was 
based on both host-based and network-based detection methodologies, where the first is optimized 
for attack similarity and threats’ determination according to discrepancies found in logs from different 
time periods (Ten, et al., 2011), and the second is responsible for the multicasting of messages 
regarding a malicious behaviour with the usage of Generic Object Oriented Substation Event 
(GOOSE) and Sampled Measured Value (SMV) techniques. 

On the other hand, (Yan & Zhang, 2013) presented a novel intrusion detection system based on a 
language-based approach for the early detection of various types of cyber-threats, including 
sophisticated versions of Advanced Persistent Threats. At first, their system converted the low-level 
network traffic into a trace sequence using the DBSCAN algorithm (Ester, et al., 1996). Afterwards, 
the Helix model (Peng, et al., 2011) was deployed as the medium of grammar induction, upon where 
grammar rules were authored to parse new network trace sequences into structural representations. 
The experimental results of this structured modelling of network traffic behaviour showed 
considerable higher precision and recall with regard to the KDD99 dataset (Lee & Stolfo, 2000). 
Such datasets are continuously used in literature and enhanced on a regular basis to provide a 
sufficient set of both normal and simulated attack activities. Doing so, the intrusion detection of 
existing or novel approaches is evaluated and benchmarked against both known and unknown 
cyber-threats. (Meira, et al., 2018) took advantage of the publicly available datasets of NSL-KDD 
(Noto, et al., 2012; Dua & Graff, 2019) and ISCX (Shiravi, et al., 2012) to measure the performance 
and novelty detection capabilities of one-class unsupervised algorithms like the autoencoding neural 
network, k-means, nearest neighbour and Isolation Forest. The results showed that all these 
techniques generate a lot of false positive alerts, but once their data are processed before the 
execution of outlier detection, then they are able to detect most of the anomaly instances. For that 
purpose, it was proposed the application of a holdout methodology to sufficiently train each 
algorithm, followed by the discretisation of continuous features using an equal frequency technique, 
and finally the provision of a data normalisation methodology to uniformly scale all features. 

Another set of complex components integrated today on several CIs which have to be also shielded 
against cyber-attacks are the Industrial Control Systems (ICS). The protocols designed for ICS suffer 
from the lack of encryption on application layer, are prone to network packets’ interception tactics, 
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and are commonly compromised to perform DoS attacks (Brenner, 2013; Long, et al., 2005). A novel 
approach for the detection and prevention of cyber-threats on ICS was presented in (Brugman, et 
al., 2019), where Software Defined Networking (SDN) was deployed to route their network traffic on 
a cloud infrastructure for further security checking. Their Cloud Based Intrusion Detection and 
Prevention System (CB-IDPS) took advantage of the cloud computing services provided by 
Amazon35 for the inspection of data in a virtual private cloud using Network Function Virtualization 
(NFV) and service function chaining techniques. Their architecture also employed several other tools 
like the OpenDaylight36 for network’s SDN controller, as well as the Zeek12 and Snort10 for the 
monitoring of traffic. The results of their work were quite promising in the context of scalability and 
resilience, improving at the same time any delay constraints and routing issues reported in previous 
works related with SDN and NFV techniques (Yu, et al., 2017; Kumar, et al., 2017). 

 

4.2.2 Advanced Persistent Threats & Response 

Advanced Persistent Threats (APTs) is a class of threats that keeps growing exponentially (Singh, 
et al., 2019) across public sectors, including of course those of CIIs. APT differentiate with the 
traditional cyber security attacks since they operate in a low and slow profile of attendance, making 
their detection and mitigation of effects very difficult to identify. Such threats encompass a set of 
sophisticated attack techniques and are usually well-resourced by organisations and NGOs or even 
state sponsored. An APT can be classified into two stages, the intrusive and disruptive stage. During 
the former, an attacker tries to identify the security tools used and collects as much data as possible, 
while during the latter the attacker aims to disrupt the operational state of one or more components 
of the CI (Tankard, 2011). Even though dealing with APT is a challenging task, the latest advances 
in AI and ML has made possible the faster detection and mitigation of their effects (Oluwasegun & 
Aminat, 2019; de Abreu, et al., 2020). 

The likelihood of the early detection and analysis of an APT attack was thoroughly investigated in 
(Bhatt, et al., 2014), who presented a research framework capable of handling complex multi-stage 
APT attacks. The core of the framework was composed of a layered security architecture where the 
access to a layer was possible only by processes and applications of its immediately outermost 
layer. The treatment of a possible attack across any layer was utilized by a hypothesis attack model 
that adopted the seven phases of an Intrusion Kill Chain (IKS) proposed in (Hutchins, et al., 2011) 
and depicted in Figure 5. 

The effective detection and analysis of a threat was based on an IDS backed by an Apache Hadoop37 
infrastructure. The IDS was responsible to collect all alerts and logs coming from the system’s 
sensors, which were configured and triggered in accordance with a predefined set of malicious 
behaviours. Hadoop was chosen as the storage and data correlation solution thanks to its high 
availability and fault tolerance (Cowsalya & Mugunthan, 2015), and it was divided into five modules 
to sufficiently deal with the logging management, malware analysis and system administration tasks. 
The APT intrusion kill chain and the need to detect and prevent specifically the insider threats in a 
timely manner also concerned (Liu, et al., 2018). Their study was based on a data analytic 
perspective of the host, network, or contextual source of extracted information, and they managed 
to correlate the available detection or prevention algorithms with one or more data sources in distinct 
taxonomies. However, this research showed that most of defenders have limited APT attack tactics 
understanding, leading to poor network traffic analysis, classification, and detection capabilities. A 

 

 

35 https://aws.amazon.com/ 
36 https://www.opendaylight.org/ 
37 https://hadoop.apache.org/ 
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potential solution to this issue was proposed in (Chizoba & Kyari, 2020), where APT attack tactics 
are first modelled, and afterwards both their dataset and a real-world “clean” dataset are generated 
through simulation. Upon them an ensemble of classifiers composed of Support Vector Machine, 
Random Forest, and Decision Tree algorithms battled for majority voting to provide the best possible 
attack classification and detection accuracy. 

 

 

Figure 5. Intrusion Kill Chain (IKS) 

 

Once more, (Sinha, et al., 2020) clearly noted the vital importance of energy CIs to our society, as 
well as the disastrous consequences in case of their disruption due to an APT cyber-attack among 
others. The necessity of guarding a power utility infrastructure was also addressed in the near past 
by (Hasan, et al., 2019), where they deployed ML techniques for the mining of network data, in order 
to detect the different stages of a potential APT attack. Last but not least, taken into account that 
power grids are one of the most crucial CIs which are continuously targeted by APTs, (Tian, et al., 
2020) introduced an APT-honeypot game to study the offensive and defensive interactions made 
between their attackers and defenders. Their results were based on the prospect theory instead of 
the classic utility theory and showed that honeypots can be used for both offense and defense 
purposes on such CIs, while the bounded rationality affects the Bayesian-Nash equilibrium strategy 
followed, reducing thus an attacker’s payoffs. 
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4.3 Data Mining Techniques 

The proactive detection of cyber-security threats has been also transformed into a big data problem 
since it involves the analysis of an increasing volume of data. The latest works in this area employ 
data mining, pattern matching algorithms or other reasoning approaches (Tianfield, 2017) to detect 
unexpected behaviour and prevent a possible compromise of the system. There are two types of 
intrusion attacks which can be detected using data mining methods. First are the host-based attacks 
when the intruder focuses on a particular network entity or a group of them, and the second are the 
network-based attacks, when the intruder attacks network components and tries to change their 
performance and status. The data mining techniques can be divided into three categories (Agrawal 
& Agrawal, 2015) which are the clustering, classification and the combination of these two, the hybrid 
technique.  

The clustering technique which divides the data into similar groups is used because there is no need 
for prior knowledge. Some approaches are: 

i. k–means: the user defines k-clusters and the method groups the data into k groups. This 
method can be used for fast anomaly detection of new incoming data; 

ii. k–medoids: similar to k-means but more robust. It is not so tolerant of outliers and noise. 
This method performs better than the k-means and can detect network anomalies that 
have unknown intrusion; 

iii. EM Clustering: something of an extension of the k-means since it considers the mean of 
the cluster when it decides the cluster assignment. It is a weighted approach of the 
previous two and it outranks them in performance accuracy; 

iv. Outlier Detection Algorithms: this method tries to find patterns in data that are not 
expected (outliers). Some examples are the Distance-based Approach that is based on 
the Nearest Neighbour. This approach examines the distances of data points to calculate 
how far they are from their neighbours. It is used and proved to be effective in detecting 
DoS attacks. Another method is the density-based local outlier approach that provides 
each data point with a degree of being outlier based on its local neighbours. 

The classification technique for anomaly detection identifies the categories of new instances after 
the training of some known observations. The observations in this technique are divided into normal 
and abnormal. Some known classification techniques are: 

i. Classification Tree: follows the structure of a flow-chart, also known as a decision tree. 
The most common algorithms are ID3 and C4.5 which follow the top-down construction 
scheme; 

ii. Fuzzy Logic: calculates the degree of membership for each input of the data and based 
on pre-defined rules, the output is produced (normal or malicious); 

iii. Naïve Bayes network: it provides efficiency in large datasets and takes advantage of the 
correlation between the variables. It calculates conditional probabilities and is typically 
accompanied by a directed acyclic graph where there are weighted links between the 
variables; 

iv. Genetic Algorithms: are used for optimization problems and are inspired by natural 
evolution (usage of mutation, selection, etc.). They provide classification rules from the 
data and they fit those rules for optimal solutions. Also, they are robust against noise, 
they have a high detection rate and low false-positive rate. For the purposes of this report 
though, Genetic Algorithms shall be described in section 4.5 below; 

v. Neural Networks (NNs): are inspired by the structure of the human brain. The neural 
models that are used for anomaly detection can form any classification decision and can 
solve any problem as long they have the right structure (enough hidden layers); 
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vi. Support Vector Machines (SVMs): are supervised learning methods for classification and 
are widely used. For anomaly base detection, the one-class SVM is based on normal 
behaviour that detects rare events (e.g. attacks). SVM is a max-margin method, which 
tries to find a function that is positive for regions with a high density of points, and negative 
for small densities. 

The final technique is the hybrid approach that is kind of a combination of the previous two. That 
allows combinations of supervised and unsupervised techniques (like k-means and ID3, Naive 
Bayes and decision tree, k-medoids and Naïve Bayes, etc.). Hybrid approaches have better results 
in classification, because they can leverage the best performing features of each of the previous 
techniques and combines them resulting in higher accuracy of anomaly detection. A set of advanced 
anomaly detections systems that make use of data mining techniques to detect novel network 
intrusions based on both known and unknown attack patterns have been introduced before in 
(Barbara, et al., 2001; Ektefa, et al., 2010). Taken into account their anomaly detection capabilities 
and the number of false positives, ADAM, IDDM, and MINDS tend to be some of the most prominent 
solutions on cyber-security domain. 

 

4.4 Deep Learning Techniques 

Deep Learning (DL) is a subset of ML that uses Artificial Neural Networks (ANNs) as algorithms to 
solve the problems they are presented with. ANNs are logic structures inspired by the way the human 
brain works. ANNs consist of an input layer, an output layer and one or more hidden layers between 
them. The ANNs with only one hidden layer are known as Shallow Neural Networks, as opposed to 
Deep Neural Networks, which have several hidden layers. The advantage of Deep Learning (DL) 
over traditional ML techniques, it is that it does not require labelled data for training. The 
disadvantage is that it requires a much larger amount of high-quality training data to achieve 
proficiency in resolving a certain problem. 

Cyberdefence mechanisms can be met today across numerous hardware and software levels of a 
CII, ranging from the application and network level, to the host and data level. Such mechanisms 
aim to efficiently deal with APT and prevent attacks by detecting intrusion attempts as well as other 
security breaches. Over the last few years several DL techniques on cybersecurity have been 
emerged as advanced and alternative solutions to the traditionally ML techniques. Most of those 
techniques are enhancements to existing ANN solutions with Deep Autoencoders, Restricted 
Boltzmann Machines, Recurrent Neural Networks, or Generative Adversarial Networks (Berman, et 
al., 2019; Imamverdiyev & Abdullayeva, 2020). 

An early work that adopted an RNN approach for anomaly detection purposes took place in (Debar, 
et al., 1992). The RNN was continuously trained with Unix command-line arguments to monitor user 
activity and predict a potential network-level intrusion. However, network’s training was not able to 
keep up with the increasingly change of users’ habits over time, limiting thus its intrusion detection 
capabilities greatly. Several years later, (Veeramachaneni, et al., 2016) developed an ANN deep 
autoencoder capable of aggregating numeric features over a time window from web and firewall 
logs. These features were used as input to train an unsupervised anomaly detection system 
composed of various techniques like the principal component reconstruction of signal, and a 
multivariate probabilistic model over the feature space. Their solution was also able to periodically 
incorporate analysts’ feedback in order to keep up with the latest cyber-security advances and 
improve its detection accuracy. A few years ago, taken into account the aforementioned works and 
the key-difficulties met in cyber-security domain regarding the application of ML techniques (Sommer 
& Paxson, 2010), an online unsupervised DL approach for the detection of anomalous network 
activity in real-time based on system logs was presented (Tuor, et al., 2017). This approach made 
use of model variants of trained Deep Neural Networks (DNNs) and RNNs, in order to recognize and 
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attribute network activity to specific users and consecutively assess if such activity is normal or 
malicious. The results were more than promising and showed that the novel decomposition of 
anomaly scores into the contributions of individual user behaviours, achieved improved anomaly 
detection in regards with insider threats, outperforming competitive PCA, SVM and Isolation Forest 
baselines. 

 

4.4.1 Deep Learning Approaches for Anomaly Detection 

DL models have been broadly used to detect outliners. This section describes some of the most 
relevant DL models applicable for anomaly detection. 

 

4.4.1.1 Deep Neural Networks 

A Deep Neural Network is an ANN with more than one hidden layer. They usually are feedforward 
networks in which data flows from the input layer to the output layer without looping back. This basic 
approach can be used for anomaly detection but is not as broadly used as other more complex ANN 
models, such as the Recurrent Neural Networks or the Convolutional Neural Networks, which are 
usually capable of achieving better performance. 

 

4.4.1.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are ANNs where connections between units form a directed 
cycle. This enables the RNN to possess a dynamic behavior in time. 

 

 

Figure 6: Example of a Recurrent Neural Network 

 

RNNs have been proposed as a way detecting network traffic anomalies (Radford, et al., 2018) as 
an effective and unsupervised tool, and they propose combining it with other supervised and human-
assisted methods in order to achieve performance improvements. (Goh, et al., 2017) used an RNN 
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to detect network anomalies with the Secure Water Treatment (SWaT) testbed dataset38, which 
represents an industrial water treatment plant. Compared to other models that obtain data in a single 
second, the presented RNN approach takes into consideration and correlates a sequence of time-
series data, achieving thus a lower false positive rate. Their approach was also capable of identifying 
which sensor the anomaly is occurring at. 

(Kim, et al., 2016) implemented the IDS classifier based on LSTM-RNN and evaluated the IDS 
model. They used some instances of the KDD Cup 1999 dataset39 for training. They reported a 
98,8% detection rate among the total attack instances, but with a slightly high false positive rate, 
namely 10%. 

 

4.4.1.3 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a subtype of deep neural networks, which are mostly 
used for image recognition. In an extremely simplified way to describe them, they are a subcase of 
DNNs formed by the following layers: 

i. Convolutional layers apply a mathematical operation named convolution40 multiple times 
to the input to generate feature maps 

ii. Sub-sampling layers reduce the size of the feature maps to decrease the resource 
consumption and to avoid overfitting 

iii. A fully connected layer makes the classification of the input 

 

 

Figure 7: Example of a Convolutional Neural Network 

 

 

 

38 https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/ 
39 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
40 https://en.wikipedia.org/wiki/Convolution 
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CNNs have been successfully used for anomaly detection in several studies. In (Kravchik & Shabtai, 
2018), CNNs are applied to detect cyberattacks in industrial control systems. The dataset used was 
the SWaT dataset -already mentioned in the RNN section- which represents an industrial water 
treatment plant. This dataset includes 36 different cyberattacks. The experimental results showed 
that the CNN was capable of detecting 32 of them. The remaining 4 were not being detected because 
as stated in the dataset description, they failed to have the expected impact on the system. 

 

4.4.1.4 Restricted Boltzmann Machines 

Boltzmann Machines (BMs)41 are defined as “a network of symmetrically connected, neuronlike units 
that make stochastic decisions about whether to be on or off” (Hinton, et al., 1984). A Restricted 
Boltzmann Machine (RBM)42 is a type of Boltzmann Machine in which a node is connected to all the 
nodes in the opposite layer by symmetric (non-directional) connections, but at the same time it is not 
connected to any other node in its own layer. This restriction significantly reduces the training costs, 
compared to the BMs. 

 

 

Figure 8: Example of a Restricted Boltzmann Machine 

 

In the near past, RBDs have been successfully used for intrusion detection purposes. A study 
conducted by (Fiore, et al., 2013) proposed “using the Discriminative Restricted Boltzmann Machine 
to combine the expressive power of generative models with good classification accuracy capabilities 
to infer part of its knowledge from incomplete training data”. It is worth also mentioning that RBDs 
have been also presented as an alternative network anomaly detection approach in cloud-based 
infrastructures (Monni, et al., 2019). 

 

4.4.1.5 Deep Belief Networks 

A Deep Belief Network (DBN) is a type of DNN which consists of several layers of stacked RBDs. 

 

 

41 https://en.wikipedia.org/wiki/Boltzmann_machine 
42 https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine 
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Figure 9: Example of a Deep Belief Network 

 

(Sharma, et al., 2016) explored DBN for anomaly detection comparing their performance to that of 
a “classic” neural network. The conclusions of their study showed that the presented deep belief 
architecture performed better compared with the classic approach. 

 

4.4.1.6 Deep Autoencoders 

Deep autoencoders are a type of DNN intended to reproduce in their output a compressed copy of 
the data received in the input layer with the minimum possible loss of data. They are composed of 
two opposed deep-belief networks, one for encoding the input data (encoder) and a second to 
decode them (decoder). The encoder learns to translate the input to a low dimensional copy, while 
the decoder tries to restore it with as minimum as possible deviation. However, an amount of data 
loss during the encoding procedure is desirable, as it aims to preserve only the “key features” of the 
input, allowing thus the autoencoder to map other similar inputs to the same output and enabling 
pattern recognition. 

 

 

Figure 10: Example of a Deep Autoencoder 
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Deep Autoencoders have been broadly used for anomaly detection usually in combination with other 
models or with modifications, such as the MemAE (Gong, et al., 2019), a Deep Autoencoder 
augmented with a memory module. The presented modification was intended on purpose, since 
Autoencoder tended to reconstruct the anomalies so well that they were not recognizable anymore. 
Last but not least, (Amarbayasgalan, et al., 2018) proposed the combination of a Deep Autoencoder 
with the Density Based Spatial Clustering algorithm DBSCAN43, as they observed that this combined 
solution obtained better results. 

 

4.4.1.7 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) were firstly introduced by (Goodfellow, et al., 2014). In 
their work they proposed pitting a generative model (such as an RBM or a DBN) against a 
discriminative model (such as a RNN or CNN). They used the analogy of the generative model being 
like a team of counterfeiters, and the discriminative model being the police. This competition game 
makes both adversaries to continuously improve their methods. A few years later, (Di Mattia, et al., 
2019) conducted an extensive survey on GANs and applied several state-of-the-art approaches for 
anomaly detection purposes, aiming to enhance the empirical validations across different datasets. 
Their application to cyber-security was also analyzed by Harris in a two-part article (Harris, 2018; 
Harris, 2018). 

 

4.4.2 A Comparison Between DL Models 

Many of the approaches listed in this section are described and compared in (Ferrag, et al., 2020). 
The authors performed a comparative experiment on DNNs, RNNs, CNNs and Deep Autoencoders 
using two real traffic datasets, the CSE-CIC-IDS201844 and the Bot-IoT dataset45. 

The DNN performance in classification was usually the lowest, but it required a lower training time 
compared with the rest of the approaches. RNN showed both good classification performance and 
satisfactory anomaly detection accuracy, but it also illustrated a slightly higher percentage of false 
positives than the CNN, DBN and Deep Autoencoder approaches. CNN presented in average the 
best performance for deep discriminative models, and its results were very close to those of the 
Deep Autoencoder, the best performance among all the generative models. RBMs and DBN shown 
an average performance higher than the average performance of the deep discriminative models, 
but lower than the Deep Autoencoder. The same study also compared the aforementioned DL 
approaches with three different ML techniques, namely the Random Forests, Naïve Bayes and SVM. 
According to their experimental results, the presented DL techniques were able to clearly outperform 
all three of them. 

DL approaches have been proven suitable for cyber-security anomaly detection in several studies, 
with high detection rates and low rates regarding false positives results. CNNs and Deep 
Autoencoders are two of the most common approaches that show a higher performance. There is 
not a specific technique that clearly outperforms the rest in terms of performance and accuracy, 
since sensitivity, specificity, true positive, and true negative rates vary depending on the type of 

 

 

43 https://en.wikipedia.org/wiki/DBSCAN 
44 https://www.unb.ca/cic/datasets/ids-2018.html 
45 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php 
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attack evaluated and the dataset used. In order to try to achieve a higher accuracy at the cost of 
simplicity, these models could be combined using a Committee Machine46 approach, on which the 
output of several neural networks are combined to achieve a solution superior to those provided by 
the individuals. 

 

4.5 Genetic Algorithms 

Genetic Algorithms (GAs) are metaheuristic procedures inspired by the process of natural selection 
and constitute a subset of the evolutionary computation domain. Their main functionality borrows 
concepts from biological operations such as the mutation and crossover, in order to generate 
optimized solutions or resolve search problems during the detection of cyber-security attacks. They 
tend to find application on problems that present several local optima and their solution requires 
more intelligent approaches compared with the standard formula-based algorithms. Multi-objective 
GA approaches have been proposed before as the median to deal with the identification and 
minimization problem in realistic case studies. Such a study takes place in (Zio & Golea, 2012), 
where GA-based algorithms take advantage of the Italian’s high-voltage electrical transmission 
network’s topology (HVIET) to analyse and identify the most critical group of edges among all the 
nodes participating in this specific CI. The results were able to imprint the critical points of the 
network’s functional relationship with a minimum only information of the topology beneath, but they 
also marked the necessity to include the physical characteristics as well in order to provide more 
robust and realistic insights. 

A few years later, (Hamamoto, et al., 2018) proposed a high-accuracy and low computational cost 
methodology which combined both GA and fuzzy logic approaches for network anomaly detection 
purposes. Their aim was to provide a Network Anomaly Detection System (NADS) capable of 
detecting network anomalies autonomously and alerting the appropriate individuals whenever a 
potential threat was discovered. The prediction and detection of anomalies was taken place in two 
phases and was based on six distinct attributes extracted from IP flows data. During the first phase, 
a GA-related implementation was responsible for the prediction of network’s behaviour, based on 
the characterization of network’s traffic and thresholds’ calculation using data collected from 
network’s assets. On the second phase, a fuzzy logic approach was used as the evaluation 
mechanism to determine whether an anomaly was present, using the afore-mentioned parameters 
and an exponentially weighted moving average statistic (Cisar & Cisar, 2007). At its core, the 
presented profile-based anomaly detection system was heavily relied on traffic behaviour 
characterisation using GA concepts like the fitness evolution at a specific time interval. This network 
profile was attributed with burst cycles which included characteristics related with the user activity 
and the daily workload of a system (Proença, et al., 2006), in order to ultimately create a Digital 
Signature of Network Segment using Flow analysis (DSNSF). This signature stored all the necessary 
information about the expected traffic behaviour of the system, which was checked for possible 
behavioural deviances that could indicate a DoS, DDoS, or other type of cyber-attacks on the 
premises of an organisation like a CII. 

 

 

46 https://en.wikipedia.org/wiki/Committee_machine 
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 Risk Assessment, Cascading Effects & 

Simulation Environments 

This chapter aims to address both the most influential and the latest works on risk assessment 
methodologies, cascading effects of cyber-attacks, and the simulation environments that could 
provide a holistic approach to the modelling of such attacks. Several cyber-security approaches, 
techniques and algorithms are presented and thoroughly described in the context of SCADA, ICT 
systems, and CIIs. 

 

5.1 Risk Assessment Methodologies 

Risk assessment methodologies involve some of the best preventive activities to protect the 
CyberSANE system and its components. The periodic execution of risk assessments is able to unveil 
potential risks to the system, enabling their future monitoring and prompting the definition of an 
incident handling approach for them. Such practices can definitely reduce the number of cyber-
security incidents, as well as the applicability of their cascading effects in the critical sectors of the 
platform. 

 

5.1.1 Risk Assessment Methodologies for SCADA & ICT Systems 

In recent years, SCADA and ICT systems are critical components of industrial automation systems 
designed to collect and store data, to delineate and control industrial processes (Mattioli & Moulinos, 
2015). They play a vital role in the efficient operations of CIIs of most Industry sectors, such as 
Energy (e.g. smart grid, power plant, energy management system), Maritime Transport (e.g. Cargo 
handling System, Vessel Tracking system, PLC marine pump and valve control) and Healthcare 
(e.g. web-based patient monitoring system, implantable cardiac defibrillators, Wireless Insulin 
Pump). In fact, most physical processes of Industry services are executed with autonomous or semi-
autonomous mechanical, physical systems and machineries under the supervision of such 
sophisticated systems (Kalogeraki, et al., 2018). The importance of SCADA and ICT systems in 
critical infrastructure operations and the high impact of a security breach in such systems, attracts 
the attention of adversaries to conduct malicious activities including data leaks, damage, corruption, 
cyber espionage, robbery and physical/cyber-attacks capable of interrupting Industry operations, 
that can cause economic loss even political disruption, environmental harm and human casualties 
(Mattioli & Moulinos, 2015). Due to this high and multi-level impact that can be activated by the 
implementation of such security challenges, there is an urgent, pressing requirement for IT 
specialists and security officers and Industry operators to protect their interconnected SCADA and 
ICT systems (e.g., telemetry systems, data controllers, RTUs, audio-visual systems, satellite 
networks, etc.) (Kalogeraki, et al., 2018).  

ENISA (Cadzow, et al., 2015) defines the concept of security in CIIs as the need for security 
coverage to a bunch of processes, techniques, and technologies related to CIIs. Information security 
enfolds a set of measures to be undertaken by supply chain operators, in order to protect and defend 
their ICT systems and the information processed within a system (which can be both cyber and 
physical) from malicious activity (e.g. unauthorized access, information leakage, modification, etc.) 
or destruction (ENISA, 2016). The implementation of cybersecurity measures on the interconnected 
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CIIs is the primary action to maintain security on their performances, which should be tailored by the 
well-known CIA triad information security model, that was first quoted in the late ‘70s by NIST: 
Confidentiality, Integrity and Availability. In recent years, this model embeds additional concepts, 
such as authenticity, accountability, non-repudiation, and reliability which should all be taken into 
account in an efficient balance (ISO/IEC JTC 1/SC 27, 2018; ENISA, 2016). 

Security measures could be adopted on CIIs amid security risk management processes and risk 
assessment implementations (ENISA, 2016). The ISO27000:2018 standard (ISO/IEC JTC 1/SC 27, 
2018) defines risk assessment as the overall process of risk identification, risk analysis and risk 
evaluation. The risk assessment process can be analysed in terms of conducting assessment of the 
vulnerability level, threat level, risk level and impact level. The outcome of a risk analysis is in most 
cases a list of risks or threats to a system, together with the corresponding probabilities following 
national or transnational or International standards in the field of risk management. A systemic review 
has been carried out to gather relevant existing literature regarding risk management methodologies 
to adumbrate cutting-edge issues and elicit important challenges. 

The underlying principles of the Risk Assessment (RA) process are captured in the National 
Academy of Science (Red Book) (National Academy Press, 1983) where assessment and decision-
making are distinguished (Stouffer, et al., 2015). Risk reflects three basic concepts: event, likelihood, 
and severity. Nevertheless, the main focus is on undesirable events which pose a loss in a specific 
context (a set of negative circumstances). A risk event can be certain or uncertain and can be 
influenced by a single occurrence or a series of occurrences. Likelihood indicates the frequency of 
an event is probable to occur. An event is modelled via likelihood of uncertainty by several 
mathematical theories such as probability theory (Ross, 2014), expected utility theory (Hogarth, 
1987), Dempster-Shaffer theory of evidence (Shafer, 1976) and fuzzy set (Zadeh, 1965). These 
theories are developed for different purposes and refer to different classes of uncertainties. There 
are three categories of uncertainty are defined: aleatoric (randomness), epistemic (incompleteness) 
(O’Hagan, et al., 2006) and imprecision (vagueness) (Smithson, 1989). Epistemic and imprecision, 
are often met in software projects and pose for a potential risk. 

There is a variety of past, well-known, outstanding risk management methods and risk assessment 
tools, which can be found in ENISA’s inventory of risk management and RA methods (ENISA, 2020), 
such as the ISO 27001-, 27005- and 31000- compliant “EBIOS” method used by ANSSI (National 
Cybersecurity Agency of France), the “OCTAVE” method (Alberts & Dorofee, 2002), a-priori 
distribution of subjectively estimated probabilities utilizing the Bayesian approach using UML 
modelling language, the Magerit open methodology for risk analysis and risk management and the 
Mehari method for harmonized risk analysis. Most of these methods and tools apply the commonly 
known rule of thumb "risk = probability x potential damage" (Zambon, et al., 2011). Additionally, 
traditional risk assessment approached are the “BowTie” (qualitative risk analysis method) and 
“CORAS” method recognizing the probability of an attack (Djordjevic, et al., 2002). According to 
(Theocharidou & Giannopoulos, 2015), existing risk management policies are using their own 
disparate methodologies with the absence of a common methodology and terminology, especially 
concerning CI-related risk assessment, which hurdles the comparison of risk assessment results 
among the EU Member States and greatens the appearance of cross-border multi-risks across 
multiple sectors. 

Estimation of security risks on SCADA and ICT systems, assumes deep analysis and 
comprehension of parameters, such as the causes of vulnerabilities. In fact, with respect to SCADA 
systems, risk is assumed “a function of the likelihood of a given threat-source exploiting a potential 
vulnerability and the resulting impact of a successful exploitation of the vulnerability” (Theocharidou 
& Giannopoulos, 2015). The NIST SP 800-82 Rev.2 publication is devoted on SCADA system 
topologies to identify typical threats and vulnerabilities on such systems, presenting recommended 
security countermeasures to mitigate the associated risks (Stouffer, et al., 2015). Most SCADA and 
ICTs began as proprietary, stand-alone systems that were separated from the rest of the world and 
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isolated from most external threats. Nevertheless, more recent SCADA systems have moved to 
more interoperability and open standards for cost efficiency and integration into management IT 
systems. For example, communication is now common over Ethernet TCP-IP including more 
standardized control protocols and applications. Open standards for SCADA systems are sources 
for adversaries to gain knowledge regarding the SCADA network topology (Igure, et al., 2006). 
(Permann & Rohde, 2005), propose the following steps for assessing a SCADA system including 
reconnaissance procedures to gather information on the target system, perform vulnerability 
Scanning within the SCADA network, meet the targets of evaluation (TOEs) identified in the 
assessment plan. In addition, they are presenting a list of open source and commercial tools for 
assessing SCADA systems (i.e. NMAP, NESSUS, STAT SCANNER, ETHEREAL, ETTERCAP, 
DEBUGGERS, FUZZERS, etc). A quantifying vulnerability method for critical infrastructures is 
introduced using the Infrastructure Vulnerability Assessment Model (I-VAM) by (Ezell, 2007). 
(Cheminod, et al., 2013) have presented the Quantitative modelling SCADA vulnerabilities CRA. 
Hence, SCADA systems are subject to external attacks and IT-based vulnerabilities. In general, the 
underlying causes of vulnerabilities in SCADA system architectures are the following (Kalogeraki, et 
al., 2018): 

i. the misconfiguration of wireless devices; 
ii. the high level of interdependency among transportation infrastructure systems; 
iii. deficiencies in security controls as lack of cryptography policies used in SCADA networks 

(Igure, et al., 2006) or unskilled, naive employees revealing passwords to colleagues 
ignoring the potential risk (Daryabar, et al., 2012); 

iv. the accessibility of systems via networks, devices and software components either 
directly (wired) or remotely (wireless) for scheduled or corrective maintenance purposes. 

A scenario-based approach to risk analysis in support of cybersecurity has been introduced 
(Gertman, et al., 2006). In 2009, a cyber-terrorism SCADA risk framework has been presented 
(Beggs & Warren, 2009). The Institute for Information Infrastructure Protection (I3P), founded by the 
Department of Homeland Security (DHS) is a research SCADA project for “Unifying Stakeholders 
and Security Programs to Address SCADA Vulnerability and Infrastructure Interdependencies” 
(Ericsson, 2009), which aims to raise the security awareness of process control systems. 
(Cherdantseva, et al., 2016) have highlighted considerable risk assessment approaches on SCADA 
systems ranging from 2004 to 2014, stemming from the following countries: USA, Korea, France, 
Canada, China, Australia, Serbia, Ireland, and Italy. (Cardenas, et al., 2011) cover the scope broader 
than RA and also describe modules for attack detection and automated response to an attack. 
(Tantawy, et al., 2019) introduce the LOPA methodology that illustrates key mathematical 
assumptions that are violated in view of security attacks. The methodology involves the probability 
of a security attack on a cyber-physical system and it evaluates it through a test-bed case study. 

A Cyber Risk Assessment Model for CIIs is presented in (Kumar, et al., 2020) which refers to the 
concept of regression analysis. (Ten,, et al., 2010) is a considerable research work introducing the 
four components of the security framework for SCADA systems: Real-time monitoring, anomaly 
detection, impact analysis and mitigation strategies. (Haimes & Horowitz, 2004) describe the eight-
phase process risk filtering, ranking, and management method (RFRM) which builds on an adaptive 
two-player Hierarchical Holographic Modelling (HHM) method to identify risks. The approach 
updates on the advances in probabilistic RA that can be applied to estimate the risk (exposure or 
expected loss) from SCADA and DCS installations. To delineate risk assessment processes, there 
are various attempts to structure ontologies for general risk assessments, such as the AURUM 
system (Ekelhart, et al., 2009). (Markovic-Petrovic, et al., 2019) propose a new method for security 
risk assessment in SCADA networks dividing it into three phases: the objective phase, the subjective 
phase and the final assessment phase using fuzzy logic in all phases and analytic hierarchy process 
(AHP) in the subjective phase. A unique framework which contributes to the growth of the CI operator 
readiness in critical situation is analysed in (Foglietta, et al., 2019). Furthermore, it produces a 



 

D5.1 - Prevention and Response to Advanced Threats   

CyberSANE D5.1 Page 41 of 66 

 

platform of a cyber-attack detection subsystem and a risk assessment framework. It embraces a 
range of capabilities, (cyber-attack detection, mitigation strategies, interdependency and risk 
evaluation). (Knapp & Langill, 2019) give a clear understanding on SCADA and Control System 
protocols and their operations, presenting implementation guidelines for security measures of critical 
infrastructures for system-specific compliance. 

Various research has been performed implementing fuzzy logic. For instance, in (Wu, 2013) a 
comparison between SCADA systems with traditional IT systems is realized summarizing the main 
risks of a SCADA system in information and security, following a typical power information system 
topology, based on assets, threats, vulnerabilities and security measures. The current model is 
established through a fuzzy analytic hierarchy process (FAHP) to quantitatively evaluate risks of a 
power information system. 

Numerous sectorial risk assessment methods have been developed for SCADA and ICT systems 
for a variety of Industries. For example, (Yang, et al., 2019) describe a SCADA security assessment 
based on causality analysis for oil and GAS SCADA systems utilizing the fuzzy Mamdani reasoning 
to estimate factor neurons in the proposed model. In (Lanzrath, et al., 2020) results of the 
implementation of a methodology for high-power EM based risk assessment of large structures are 
presented in accordance with an example of smart grid substations. Another indicative example 
regarding power systems is shown in (Meng, 2015) presenting a research work regarding dynamic 
and static risk assessment for power information systems. 

According to (Kalogeraki, et al., 2018), a successful RA approach for SCADA and ICTs may have 
the following characteristics: a structured body of cybersecurity knowledge (Zio, 2018; Kalogeraki, 
et al., 2018), business modelling and simulation techniques adoption to carry out different real-life 
cyber-attack scenarios and experiment with the results (Theocharidou & Giannopoulos, 2015; 
Kalogeraki, et al., 2018) implementing rational decision-making techniques for probabilistic RAs of 
complex cyber-attack scenarios, identify common or cross-border scenarios throughout national and 
regional limits (Theocharidou & Giannopoulos, 2015), engage all CII operators, including entities of 
both public and private sector participating, to have a clear and detailed view of SCADA cyber-risks 
at the asset-individual level, identify the overall cyber dependencies47 across SCADA Networks to 
detect the impact at the system level (Kalogeraki, et al., 2018), be compliant with regulations and 
directives or international standards applying to the underlined sector providing collaborative 
practices to facilitate the sharing and transfer of risk-related information over cross-sectorial CIIs 
operators. 

Summarizing, the literature shows that effective cost-benefit analysis and evaluation of SCADA and 
ICT cyber-risks are based on a straightforward approach combining a set of parameters and 
features, such as the likelihood of security events, the consequences of the event itself and the 
exploitation level of vulnerability (Zambon, et al., 2011). On this account, novel risk and resilience 
assessment approaches that may assess and demonstrate the ability to develop and implement 
effective risk assessment strategies and ensure SCADA systems resilience against aftermath cyber-
incidents. 

Credible approaches that can be useful to the current project’s objective could be the Cyber/Physical 
Security Management System (CYSM) collaborative approach (Papastergiou, et al., 2015), the 
MEDUSA’s research method (Papastergiou & Polemi , 2017) which sets a number of concepts, 
algorithms, and tools evolved from research, specially designed to protect the IT infrastructure and 

 

 

47 Cyber dependency can be defined the connection between two or more assets, where the current state of 
one asset is directly affected from the state of another asset 
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associated systems and the MITIGATE collaborative, dynamic, evidence-driven Maritime Supply 
Chain Risk Assessment approach (Kalogeraki, et al., 2018; Papastergiou & Polemi, 2018). 

 

5.2 Attack & Simulation Environments 

The evolving cyber-threats’ landscape and the enormous effort needed to efficiently secure data in 
the context of a CII, denoted the necessity of adopting more advanced environments capable of 
providing a holistic picture of the system. For that reason, over the last years several types of attack 
modelling and simulation techniques have been developed to deal with a network’s vulnerabilities, 
the behavioural analysis of a cyber-threat, and the potential objectives of an attacker. A proper 
utilisation of such techniques not only provides an improved planning of a rapid response to a 
security incident, but it also assists with the automation procedure of the threat modelling through 
simulation-driven approaches. Last but not least, their results could serve as the basis of an 
evaluation regarding the proposed security enhancements found in a CII, as well as benefit the 
improved understanding and management of stakeholders’ risks (wherever such a scenario applies). 

 

5.2.1 Attack Graph Methods & Algorithms 

In recent years, attack modelling is considered a useful tool in risk assessment of cyber-physical 
systems (i.e. SCADA systems) (Kriaa, et al., 2012). On such systems, attack vectors are strongly 
dependent on considerations regarding the technical and operational environment where an attack 
takes place. On this account, attack graphs are data structures that are able to model all possible 
avenues of a network attack. Attacks on SCADA systems may cause disruption or damage of CIIs. 
The attacker’s profile is a parameter of in-depth security risk analysis to identify security risks in 
SCADA systems. The attacker’s profile appears to have one or a combination of the following 
characteristics. 

As it has been already mentioned in the deliverable of CyberSANE D3.1 “Taxonomy of threat 
landscape for CIIs”, remarkable cyber-attack vectors against SCADA systems are (Kalogeraki, et 
al., 2018) database pear on the transport layer, at application layer (lack of security control to many 
of the attacks; backdoors and holes in the network perimeter; Cinderella attack on time provision 
and synchronization, communications hijacking and man-in the middle attacks). These attacks fall 
in four categories: 

i. on the Communication stack; 
ii. on the UDP port (attacks onSCADA protocols); 
iii. on the hardware; 
iv. on the software. 

In order to evaluate the vulnerability of SCADA and ICT networks the effects of interconnected 
relations must be considered. A typical process of vulnerability analysis can be conducted via 
scanning tools identifying individual vulnerabilities. Local vulnerability information together with 
network information (i.e. connectivity between hosts) are able to build attack graphs (Jha, et al., 49-
63). Attack graph paths are considered a series of exploits, the so-called atomic attacks, which can 
drive the process to an undesirable state (e.g. an adversary gains administrative access to a critical 
host) (Jha, et al., 49-63). Attack graphs can be utilized for detection, defence and forensic analysis 
purposes (Jha, et al., 49-63). 

Cyber-attack prevention technologies typically use attack graph generation and analysis methods to 
identify all possible paths that attackers can exploit to gain unauthorized access to a system (Ou & 
Singhal, 2011). There is considerable work for attack graph generation and analysis. The Model 
checking algorithm is a technique for checking whether a formal model M of a system satisfies a 
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given property p (Jha, et al., 49-63). A typical example is the model checker NuSMV (Cimatti, et al., 
1999), in which model M is a finite labelled transition system and p is a property expressed in 
Computation Tree Logic (CTL) (Jha, et al., 49-63). Attack graphs can be assumed direct graphs in 
the form of representing a network (nodes are states and edges are the application of an exploit that 
can transfer a network state into another, more compromised network state) (Chochliouros, et al., 
2009). The ending states of the attack graph represent the network states in which the adversary 
has met his goals. In addition, an attack graph can be considered in the form of a dependency graph 
exploit (Chochliouros, et al., 2009).  

Dependability can be characterized by the following attributes: availability of service (readiness for 
correctness), reliability (continuity) of service, safety (absence of negative/catastrophic 
consequences) of users and the environment, confidentiality (unauthorized disclosure), integrity and 
maintainability (repair) (Chochliouros, et al., 2009). The literature reviews numerous techniques to 
evaluate dependability in terms of security. Cyber-attacks can be considered either intentional or 
unintentional (accidental) and dependability can be evaluated through stochastic analysis, 
(sophisticated method to measure the probability/acceptability of faults (Chochliouros, et al., 2009). 
In case a large network analysis is either an explicit or strict requirement a quantitative, much more 
complex analysis is preferred, which can be achieved through probabilistic models (Chochliouros, 
et al., 2009). Sophisticated attacks aggregate multiple vulnerabilities of a system. Such advanced 
attacks can be modelled with probabilistic attack graphs that represent the different states of a 
system as nodes and the relations between different states as directed edges. In this way, they allow 
computation of all potential attack paths to a target of interest. One single path describes the various 
steps of an attack where exploiting one vulnerability grants access to other vulnerabilities, e.g. by 
gaining some privileges. Even for small networks, as presented in (Singhal & Ou, 2017), attack paths 
may become quite complex and several tools may be required to develop the attack graphs. 

In terms of dependency evaluation, traditional techniques to ensure that a service is operating 
correctly are covering the “absolutely necessary” are Block Diagrams (BDs) and Fault Trees (FTs) 
whilst more sophisticated approaches rely on Markov Models (Chochliouros, et al., 2009). 
Remarkable examples of semi-quantitative risk assessment approaches for SCADA and ICT 
systems are found in the literature, such as the Fault Tree Events Analysis which estimates the 
frequency of event occurrence in an undesired (top/root) logical scale (Ralston, et al., 2007). The 
OBEST object-based event scenario tree illustrates combined features of event tree analysis and 
Monte-Carlo discrete event simulation along with concepts of object-oriented analysis for risk 
assessment (Wyss & Durán, 2001). (Schneier, 1999) introduced the attack trees as a method to 
formalize the security of systems and subsystems regarding varying attacks. A probabilistic-based 
RA Tool provides a foundation for the estimation of risk reduction when applied to SCADA security 
(McQueen, et al., 2006). Augmented vulnerability trees and two new indices for quantifying risks 
were introduced by (Ralston, et al., 2007). (Byres, et al., 2004), illustrate the use of attack trees for 
assessing vulnerabilities in SCADA systems and control hardware. Significant research is carried 
out on assessing the Byres attack trees, to estimate vulnerabilities in SCADA systems based on 
MODBUS and MODBUS/TCP communication protocols, and reckon the features of the topmost 
attack event investigating possible ways to achieve the final goal of the attack (Cherdantseva, et al., 
2016).  In (Poolsappasit, et al., 2012), they make use of Bayesian attack graph generation for 
dynamic security risk management.  

Concerning Markov Model approaches, (Xiaolin, et al., 2008) present a Markov game theory-based 
risk assessment model for network information systems. Moreover, they utilize a Markov chain to 
analyse the spreading process of potential threats and to assess the system risk. (Kriaa, et al., 2012) 
Additionally, to analyse the Stuxnet attack that targets SCADA systems and model its fundamental 
mechanisms in unique and rigorous graphs following the BDMP (Boolean logic Driven Markov 
Processes) formalism to deliver quantification results for each possible attack sequence and to 
illustrate the advantages of such modelling. 
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Topological Analysis of Network Attack Vulnerability (TVA) builds a so-called exploit dependency 
graph that contains information about conditions of an exploit and then searches this graph to 
combine various vulnerabilities (Jajodia, et al., 2005; Ou & Singhal, 2011). In (Ou, et al., 2005) the 
authors developed a MulVAL, a logic-based network security analyser. This is a vulnerability analysis 
tool that models the interaction of software bugs along with network configurations. NetSPA is a 
network security planning architecture that very efficiently generates the worst-case attack graphs 
(Artz, 2002).  

A component metric is attached to each attack node derived from the Common Vulnerability Scoring 
System (CVSS) metric vector (Mell, et al., 2007). Based on these component metrics, models for 
cumulative and propagated risks have been developed. In (Homer, et al., 2009) an algorithm is 
provided to compute the probability of success of a multi-step attack using probabilistic reasoning 
that takes into account the conditional dependencies between attack paths. The method has been 
applied in an empirical study in (Zhang, et al., 2011) and extended in (Homer, et al., 2013). 

A simulation-driven approach is a composite process aiming to discover and execute possible attack 
plans, based on a suitable formalism (Johnson, et al., 2018), where attack graphs model the attack 
steps, executed by a set of threat agents to produce risk-related results and allow the subsequent 
simulation. A variety of approaches explore attack simulation and computation of attack graphs over 
IT infrastructures; agent model (Rybnicek, et al., 2014), the automatic attack-graph generation model 
(Al Ghazo, et al., 2019), the intelligent goal-oriented agents’ mode of (Shen, et al., 2004), the formal 
model to calculate very large attack graphs, allowing attacks’ simulation in the domain of interest 
(Johnson, et al., 2018). The minimum critical-attacks graph set is considered an NP-completeness 
problem (equivalently with the min Label-Cut problem, MLC) (Al Ghazo & Kumar, 2019). The NP-
completeness is established by reducing the Hitting-Set problem to the MLC, and Jha et al. (Jha, et 
al., 2002) also presented a greedy algorithm to the Hitting-Set problem that picks the elements with 
the highest hits first. 

 

5.2.2 Cascading Effects 

Cascading effects are observed when one or more cybersecurity incidents are propagated 
throughout the components of a CI, or in case those incidents’ derivatives lead to some type of 
security breach. In most cases this chain of effects is inevitable since the majority of a system’s 
components are interdependent and interconnected with at least another one. Therefore, most of 
the studies in this area focus into disaster risk reduction (McGee, et al., 2016) by understanding the 
interconnected relationships of a CI, as well as providing a modelling or simulation insight regarding 
the expected response of a CI to a certain incident. This model-based insight is used to depict the 
cascading effects on CIIs, present the consequences of a cyber-attack, and improve the decision 
making based on the recorded attack path. 

In the modern era, cascading effects occur in various domains with growing frequency among 
interdependent assets of CIIs. The ISO31000:2018 international standard (ISO/TC 262, 2018) 
considers cascading effects along with the identification of interdependencies, whitespace risks and 
events as critical factors for conducting a risk assessment process. General observations of 
cascading failures fall in two phases: the slow cascading phase, where things still seem to work 
properly, and the fast cascading phase where the system gets out of control. 

There are multiple causes of cascading failures. In some domains, the cascading behaviour can be 
identified to model cascading failure adequately. A variety of the existing studies are focused on the 
modelling of interdependent networks and theoretical analysis of the cascading effects, which 
capitalizes mainly on the theory of random graphs. The theory of random graphs has been typically 
used to investigate single networks. Such graphs are capable of analysing behaviours in real-world 
networks (Shin, et al., 2014). (Shin, et al., 2014) develops a framework to identify important 
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topological properties of large-scale networks (e.g. including average diameter, node clustering 
coefficient, network modularity, degree correlation etc.). Such topological properties can vary under 
different scenarios. 

Another generic characteristic is the difficulty of measuring the impact of cascading failures because 
of the high complexity and many indirect costs. The literature reviews limited data available on 
incidents that caused cascading effects. Whenever possible, historical data is used in combination 
with expert knowledge to keep the number of assumptions limited. Existing studies as presented in 
(Ouyang, 2014) help to define failure patterns or to detect interdependencies that are not obvious at 
first glance. The uncertainties challenging the interdependencies among infrastructures are 
discussed in (Hasan & Foliente, 2015). Concerning cascading failures in Industry networks, most 
current studies involve only single network models because it is difficult to represent real-world 
network systems of an Industry supply chain engaging multiple attributes and functions and 
interdependent network models (Tang, et al., 2016). A proposed solution of  time-varied functional 
equations to quantify the dynamic process of failed loads propagation in an interdependent network 
is provided in (Tang, et al., 2016) including a twofold simulation case. (Huang, et al., 2013) aim to 
estimate cascading failures in cyber-physical interdependent systems by calculating the fraction of 
nodes that is able to continue the performance after the cascading failure stops and obtain accurate 
results via simulation methods. They show that there is a critical threshold. In case the proportion of 
failing nodes exceeds this value, the entire system collapses. (Panda & Bower, 2020) investigate 
and analyse correlations between traditional risks of critical infrastructures (according to the Sendai 
framework) and cyber-security risks with the respective cascading effects to identify characteristic 
of today’s complex and interrelated shocks and stresses. 

Regarding cascading effect measurements, structural, “Systems-of-Systems” (SoS) research 
approaches are rich of contributions, ranging from the categorization of interdependencies 
(Rinaldi, et al., 2001; Pederson, et al., 2006) to their utilization in vulnerability analysis (Zio & 
Sansavini, 2011; Bloomfield, et al., 2010). The study of the interdependencies is an attractive 
field for research concerning SCADA and ICTs along with the importance of potential failure 
propagation among CIIs that may lead to cascading effects within the supply networks. In 
this context, new powerful methods are required to model and describe such SoS in an 
holistic manner to provide security and reliability assessment considering various types of 
threats and failures developing “what-if” scenarios to analyse interdependencies (Eusgeld, 
et al., 2011). A SoS approach is proposed in (Eusgeld, et al., 2011) for SCADA systems 
taking into account their interdependencies with the underlined CIIs focusing on the coupling 
of these systems and introducing the HLA simulation standard for interdependencies. In 
(Hashemi & Zarif, 2020), a control structure SoS approach for power distribution networks is 
analysed. 

Behavioural analysis relieves mechanisms of failure propagation, cascading effects that occur as 
consequence of complex interactions among systems that reflect the theory of resilience 
(Giannopoulos, et al., 2012). The most promising research contributions reflect the domain of control 
rather than risk (Giannopoulos, et al., 2012). In this vein, there is enough space for innovation 
(Filippini & Silva, 2011) adjusting the control concept to interdependent systems and conducting an 
evaluation of the resilience (Giannopoulos, et al., 2012). 

“Consequence” is defined by the ISO27000:2018 standard as the “outcome of an event affecting 
objectives”. Assessment of consequences embeds worst case scenarios according to cross-cutting 
criteria (Theocharidou & Giannopoulos, 2015). Impact is considered the effect of the security state 
of a system due to an information system’s change. The key-concepts and impact measurement in 
SCADA systems, including system (asset), vulnerability, threat impact (consequence) and security 
control-countermeasure have been identified (Cherdantseva, et al., 2016; Ericsson, 2009; Francia 
III, et al., 2012; Markovic-Petrovic & Stojanovic, 2014; Verendel, 2009). 
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Despite the strong diversity of models of cascading effects, a rough classification helps to get an 
overview on the different lines of reasoning. A set of modelling techniques and simulation 
approaches for critical infrastructures are given in (Oliva, et al., 2012) and a compact comparison 
between the different models for cascading failures in power systems is argued in (Guo, et al., 2017). 
Existing approaches can be divided into different classes according to their main focus, such as 
topological models, stochastic models, dynamic simulation models and agent-based models. This 
list is not exhaustive since other models exist that do not belong to any of the five groups, but the 
ones presented in the following are the most significant approaches with respect to their applicability 
capabilities in both existing and future domains. 

Many models of cascading failures are based on topological properties of the network. Node degrees 
are used as weights in (Wang & Chen, 2008; Wei, et al., 2012) and local flow distribution rules in 
this weighted graph allow analysing consequences of failure of an edge. Between centrality has 
been used to investigate overload breakdowns in scale-free networks (Holme, 2002; Holme & Kim, 
2002). Triggered events and random failure are juxtaposed in (Kim & Obah, 2007) concerning 
graphical features, such as critical path lengths and small world-ness index. A node capacity model 
is presented in (Motter, et al., 2002) to analyse terms, such as capacity considering that a component 
either works properly or fails. Topological models are mostly generic and can work in complex 
networks beyond the limits of a specific sector. Nonetheless, such models may result in a confused 
outcome for specific sectors (Hines, et al., 2010). Notwithstanding, they provide a good basis for 
more advanced models as shown in (Dey, et al., 2016). Several extensions work with maximum flow 
theory to model power grids attitude, as presented in (Fan, et al., 2016) and (Rinaldi, et al., 2001). 
Despite these models are generally applicable, they do not elaborate the underlined situation, 
analysing thoroughly and thus are error-prone concerning their prediction capability.  

Stochastic models allow simulation that may be used to validate the model or make predictions and 
provide simulation on several possible events. (Lai, et al., 2019) estimate the robustness of 
asymmetric cyber-physical power systems against cyber-attacks taking into consideration the effects 
of computer malware spreading, power redistribution as well as  overloading and the interrelations 
between the coupled networks, adopting a stochastic failure model to calculate the time interval 
between the initial cyber-attack and a given level of power loss counting on simulation results. 
Popular stochastic processes are Markov chains and branching processes often used for modelling 
as presented previously in attack graph representations as well. The model in (Zhang, et al., 2017) 
describes the failure dynamics of the entire network through a power flow model for the failure 
propagation combined with a stochastic model for the time between failures. It provides a simulation 
of the cascading procedure and investigates the systems robustness. Whenever detailed information 
about the system at hand is available, more accurate predictions based on more involved simulation 
models are possible. Such simulations are more evolved and less applicable for real time predictions. 

Indicative dynamic models presenting the cascading process based on a linear programming 
approach (the OPA model) are introduced in (Carreras, et al., 2002; Mei, et al., 2009) enabling 
simulation of the patterns of cascading blackouts in power systems considering the dynamics and 
the potential mitigation actions. The COSMIC model (Song, et al., 2016) is a nonlinear dynamic 
model for cascading failures in power systems which describes many mechanisms by recursive 
computations of the corresponding differential equations. A dynamic probabilistic risk assessment is 
used in (Henneaux, et al., 2012) in order to indicate the coupling between events in cascading failure 
and the dynamic response of the grid to the perturbation which has been extended (Henneaux, et 
al., 2016).  

Agent based models are created either from existing system dynamic models or discrete event 
models (Borshchev & Filippov, 2004). The N-ABLE model aims to identify physical effects of cyber-
attacks in infrastructures (Kelic, et al., 2008). Additionally, agent based models are used to model 
risk responses in a complex society (Busby, et al., 2016) which in turn provide a basis to simulate 
responses of society to incidents in critical utilities (Busby, et al., 2016) and to analyse maintenance 
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strategies in critical infrastructures (Kaegi, et al., 2009). Moreover, agent-based models can provide 
detailed information about the potential consequences of incidents for a given scenario and thus 
allows a very detailed “what-if”-analysis. 

 

5.3 Data Visualization Techniques 

Nowadays, the amount of data related with cyber-security events, as well as their interdependencies 
and correlations, are big and complex enough to handle in a timely manner. Therefore, the use of a 
visualization tool is considered necessary as a compulsory part of any cybersecurity solution. 
Specifically, cyber-security data visualization refers to creating charts, graphs and similar visual 
material from cyber-security data within a specific context. The data in visuals can be gathered from 
various sources. With the help of data visualisation methods, security officers or end users can have 
demonstrated and exposed: a) a comparative graph of malicious activity patterns; b) heat maps that 
illustrate the scope and severity of a security incident; and visualizing patterns that allows to detect 
possible additional attacks and from where such attacks can hit an infrastructure or organization. 
The threat-detection and proactive capabilities of CyberSANE will take advantage of a cyber-
dashboard which is capable of visualizing and linking a CII network with regards to a detected threat. 
Such a thing is feasible by adopting one or more visualization techniques, where usually a graph 
representation of connections and relationships is used to depict and analyse a malicious event. 
Noel et al. (Noel, et al., 2016) developed a unified graph-based cyber-security model (i.e. CyGraph) 
capable of capturing security events, building a predictive model of possible attacks, and correlating 
events to known vulnerability paths. CyGraph also prioritizes exposed vulnerabilities, mapped to 
potential threats, in the context of mission-critical assets. 

When analysing cyber-security data, the connections -between devices, events, locations, IPs, 
signatures, and so on- hold the key to uncovering anomalies, threats and vulnerabilities. 
Visualization solutions (e.g. Cambridge Intelligence48, Qlik49, Tableau50, etc.) need to integrate new 
computational and theory-based algorithms with innovative interactive techniques and be compatible 
with advanced big data analytics frameworks, in order to act as a mediator of human-information 
discourse between humans and these information resources. Besides, visualization alone cannot 
effectively manage levels of details about the data or prioritize different information in the data - 
hence the need for analysis and interaction. The visual designs should be also based on human 
cognitive and perceptual principles. In addition to this, the challenges faced by a cyber-security 
professional are more complex ranging from fraud detection, network forensics, data privacy issues 
and data provenance problems (Jayasingh, et al., 2016). The response time is a desirable factor in 
cyber-security analytics that is also relevant from a visualisation point of view. Presenting results in 
a manner that is understandable by people without proven skills and experience in data science is 
highly relevant (Fan, et al., 2017). A reasonable degree of transparency, a key prerequisite to 
increase trust in data, is also relevant with respect to some of the issues identified. The densely 
connected nature of graph data can be complex to unravel. A few simple techniques, like filtering 
and layouts, can make insights easier to understand and communicate. In addition to this, time bars 
and macro-views of the datasets allows to investigate long-term patterns and trends (i.e. malware 
propagation, unusual login/access habits, unusual network traffic, etc.). 

Finally, it is worth looking at two important dimensions to the collected and analysed data that are 
difficult to convey with standard node-link visualisation: time and location. By understanding the 

 

 

48 https://cambridge-intelligence.com/products/ 
49 https://www.qlik.com/us/ 
50 https://www.tableau.com/ 

https://cambridge-intelligence.com/products/
https://www.qlik.com/us/
https://www.tableau.com/
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physical location of an entity and the time of an event can unlock insights into patterns and trends, 
helping to uncover the origin of an attack, or predict what will happen in the future51. Using time bars 
in combination with maps, it is possible to filter the data by time and date and observe the evolution 
of an event as it occurs. 

 

 

51 https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/ 

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
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 Conclusions 

This deliverable has thoroughly described both the mainstream and the latest advances in R&D on 
proactive detection and response methodologies that could be of potential use in CyberSANE. As 
aforementioned, these areas were the more critical for us and the main goal in this document was 
to provide new strategies and solutions that we could adopt or to use for enhancing our solutions. 

Therefore, the key elements we study and analyse here are incident handling and response 
approaches along with a several solutions of digital chains of evidence that could be used for 
evidence correlation and event display purposes. 

The process we followed was composed of different phases where we identified the different topics, 
analysed the improvement and studied how the tools of CyberSANE could benefit from this work. 
We performed this one area at a time in order to have all partners involved for each area and have 
a better understanding of the improvements and the impact that adopting improved algorithms or 
approaches would have for the whole hybrid net. This was necessary as we thought it was important 
to evaluate the impact of the different solutions we find in the project. 

Another interesting aspect of the analysis is that the CyberSANE’s threat taxonomy was used as the 
medium to enumerate the most typical tools, platforms and techniques within the proactive detection 
and response domain. Our cyber-security related survey continued across several research 
backgrounds of interest in anomaly-based detection methodologies, including all types of statistical 
analysis and machine learning, data mining and deep learning techniques, ultimately concluded with 
a couple of works in genetic algorithms area. 

Finally, we investigated risk assessment methodologies, cascading effects and visualization 
environments in order to provide the CyberSANE platform with improved prevention and modelling 
capabilities. 

All the above mentioned techniques are taken into consideration and will be scrutinised for their use 
and suitability in the upcoming tasks of WP5 for the implementation of automated and parameterized 
detection and response approaches for CIIs. 
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 List of Abbreviations  

Abbreviation Translation 

AAM Adaptive Assignment Manager 

ADS Anomaly Detection System 

AHP Analytic Hierarchy Process 

ANN(s) Artificial Neural Network(s) 

APT(s) Advanced Persistent Threat(s) 

BCP Business Continuity Plan 

BD(s) Block Diagram(s) 

BM(s) Boltzmann Machine(s) 

BDMP Boolean logic Driven Markov Processes 

CB-IDPS Cloud Based Intrusion Detection and Prevention Systems 

CDN Content Delivery Network 

CERT Computer Emergency Response Team 

CI(s) Critical Infrastructure(s) 

CII(s) Critical Information Infrastructure(s) 

CNN(s) Convolutional Neural Network(s) 
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CSIRT(s) Computer Security Incident Response Team(s) 

CTL Computation Tree Logic 

CVSS Common Vulnerability Scoring System (CVSS) 

DBN(s) Deep Belief Network(s) 

DDoS Distributed Denial of Service 

DL Deep Learning 

DNN(s) Deep Neural Network(s) 

DNS Domain Name Service 

DoS Denial of Service 

DSNSF Digital Signature of Network Segment using Flow analysis 

DTD Document Type Description 

ENISA European Union Agency for Cybersecurity 

FAHP Fuzzy Analytic Hierarchy Process 

FT(s) Fault Tree(s) 

GA(s) Generic Algorithm(s) 

GAN(s) Generative Adversarial Network(s) 

GOOSE Generic Object Oriented Substation Event 

ICS Industrial Control Systems 
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ICT Information and Communication Technology 

IDIP Intruder Detection and Isolation Protocol 

IDS Intrusion Detection System 

IKS Intrusion Kill Chain 

IPS Intrusion Prevention System 

IR Incident Response 

MHN Multiple Honeypot Solution 

MISP Malware Information Sharing Platform 

ML Machine Learning 

MCUSUM Multivariate CUmulative SUM 

NADS Network Anomaly Detection System 

NFV Network Function Virtualization 

NIST National Institute of Standards and Technology 

NN(s) Neural Network(s) 

OTT Open Threat Taxonomy 

PAM Partitioning Around Medoids 

PCA Principal Component Analysis 

RA Risk Assessment 
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RBM(s) Restricted Boltzmann Machine(s) 

RNN(s) Recurrent Neural Network(s) 

SCADA Supervisory Control and Data Acquisition 

SDN Software Defined Networking 

SMV Sampled Measured Value 

SoS Systems-of-Systems 

SPC Statistical Process Control 

STIX Structured Threat Information Expression 

SVM(s) Support-Vector Machine(s) 

SWaT Secure Water Treatment 

TAXII Trusted Automated Exchange of Intelligence Information 

TOCSR Taxonomy of Operational Cyber Security Risks 

TVA Topological Analysis of Network Attack Vulnerability 

VPN Virtual Private Network 

WSN Wireless Sensor Networks 
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